AttributeError: 'MSVCCompiler' object has no attribute 'compiler_so'

import os
from os.path import join as pjoin
from setuptools import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy as np

def find_in_path(name, path):
“Find a file in a search path”
# Adapted fom
# Find a file given a search path « Python recipes « ActiveState Code
for dir in path.split(os.pathsep):
binpath = pjoin(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None

def locate_cuda():
“”"Locate the CUDA environment on the system

Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.

Starts by looking for the CUDAHOME env variable. If not found, everything
is based on finding 'nvcc' in the PATH.
"""

# first check if the CUDAHOME env variable is in use
if 'CUDAHOME' in os.environ:
    home = os.environ['CUDAHOME']
    nvcc = pjoin(home, 'bin', 'nvcc')
else:
    # otherwise, search the PATH for NVCC
    default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin')
    nvcc = find_in_path('nvcc',
                        os.environ['PATH'] + os.pathsep + default_path)
    if nvcc is None:
        raise EnvironmentError(
            'The nvcc binary could not be '
            'located in your $PATH. Either add it to your path, or set $CUDAHOME'
        )
    home = os.path.dirname(os.path.dirname(nvcc))

cudaconfig = {
    'home': home,
    'nvcc': nvcc,
    'include': pjoin(home, 'include'),
    'lib64': pjoin(home, 'lib64')
}
for k, v in cudaconfig.items():
    if not os.path.exists(v):
        raise EnvironmentError(
            'The CUDA %s path could not be located in %s' % (k, v))

return cudaconfig

Test if cuda could be foun

try:
CUDA = locate_cuda()
except EnvironmentError:
CUDA = None

Obtain the numpy include directory. This logic works across numpy versions.

try:
numpy_include = np.get_include()
except AttributeError:
numpy_include = np.get_numpy_include()

def customize_compiler_for_nvcc(self):
“”"inject deep into distutils to customize how the dispatch
to gcc/nvcc works.

If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""

# tell the compiler it can processes .cu
self.src_extensions.append('.cu')

# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile

# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
    if os.path.splitext(src)[1] == '.cu':
        # use the cuda for .cu files
        self.set_executable('compiler_so', CUDA['nvcc'])
        # use only a subset of the extra_postargs, which are 1-1 translated
        # from the extra_compile_args in the Extension class
        postargs = extra_postargs['nvcc']
    else:
        postargs = extra_postargs['gcc']

    super(obj, src, ext, cc_args, postargs, pp_opts)
    # reset the default compiler_so, which we might have changed for cuda
    self.compiler_so = default_compiler_so

# inject our redefined _compile method into the class
self._compile = _compile

run the customize_compiler

class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)

ext_modules = [
Extension(“bbox”, [“bbox.pyx”],
# extra_compile_args={‘gcc’: [“-Wno-cpp”, “-Wno-unused-function”]},
include_dirs=[numpy_include]),
Extension(“anchors”, [“anchors.pyx”],
# extra_compile_args={‘gcc’: [“-Wno-cpp”, “-Wno-unused-function”]},
include_dirs=[numpy_include]),
Extension(“cpu_nms”, [“cpu_nms.pyx”],
# extra_compile_args={‘gcc’: [“-Wno-cpp”, “-Wno-unused-function”]},
include_dirs=[numpy_include]),
]

if CUDA is not None:
ext_modules.append(
Extension(
‘gpu_nms’,
[‘nms_kernel.cu’, ‘gpu_nms.pyx’],
library_dirs=[CUDA[‘lib64’]],
libraries=[‘cudart’],
language=‘c++’,
runtime_library_dirs=[CUDA[‘lib64’]],
# this syntax is specific to this build system
# we’re only going to use certain compiler args with nvcc and not with
# gcc the implementation of this trick is in customize_compiler() below
extra_compile_args={
‘gcc’: [“-Wno-unused-function”],
‘nvcc’: [
‘-arch=sm_35’, ‘–ptxas-options=-v’, ‘-c’,
‘–compiler-options’, “‘-fPIC’”
]
},
include_dirs=[numpy_include, CUDA[‘include’]]))
else:
print(‘Skipping GPU_NMS’)

setup(
name=‘frcnn_cython’,
ext_modules=ext_modules,
# inject our custom trigger
cmdclass={‘build_ext’: custom_build_ext},
)

anyone can help?