Can’t create layer “cluster” of type “” in function ‘getLayerInstance’

Hello everyone,
i’m currently having a problem implementing an object detection model trained by nvidia digits
and i always get this erros : cv2.error: OpenCV(4.2.0) /io/opencv/modules/dnn/src/dnn.cpp:562: error: (-2:Unspecified error) Can’t create layer “cluster” of type “” in function ‘getLayerInstance’

the python code i’m using from pyimagesearch :

# import the necessary packages
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
	help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["Carrefour"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])


class ClusterDetections(model):
    def __init__(self, params, blobs):
        self.is_groundtruth = False
        try:
            plist = params['param_str'].split(',')
            self.image_size_x = int(plist[0])
            self.image_size_y = int(plist[1])
            self.stride = int(plist[2])
            self.gridbox_cvg_threshold = float(plist[3])
            self.gridbox_rect_thresh = int(plist[4])
            self.gridbox_rect_eps = float(plist[5])
            self.min_height = int(plist[6])
            self.num_classes = int(plist[7]) if len(plist) > 7 else 1
        except ValueError:
            raise ValueError("Parameter string missing or data type is wrong!")

    def getMemoryShapes(self, bottom):
        n_images = bottom[0][0]
        num_classes = bottom[0][1]
        if num_classes != self.num_classes:
            raise ValueError("Unexpected number of classes: %d != %d, bottom[0] shape=%s" % (num_classes, self.num_classes, repr(bottom[0].data.shape)))
        top = []
        for i in xrange(num_classes):
            top.append([1, n_images, MAX_BOXES, 5])  # Make it 4-dimensional
        return top

    def forward(self, bottom):
        top = []
        for i in xrange(self.num_classes):
            data0 = bottom[0][:,i:i+1,:,:]
            bbox = cluster(self, data0, bottom[1])
            top.append(np.expand_dims(bbox.astype(np.float32), 0))
        return top

cv2.dnn_registerLayer('ClusterDetections', ClusterDetections)


# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
# (note: normalization is done via the authors of the MobileNet SSD
# implementation)
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)

# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()

# loop over the detections
for i in np.arange(0, detections.shape[2]):
	# extract the confidence (i.e., probability) associated with the
	# prediction
	confidence = detections[0, 0, i, 2]

	# filter out weak detections by ensuring the `confidence` is
	# greater than the minimum confidence
	if confidence > args["confidence"]:
		# extract the index of the class label from the `detections`,
		# then compute the (x, y)-coordinates of the bounding box for
		# the object
		idx = int(detections[0, 0, i, 1])
		box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
		(startX, startY, endX, endY) = box.astype("int")

		# display the prediction
		label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
		print("[INFO] {}".format(label))
		cv2.rectangle(image, (startX, startY), (endX, endY),
			COLORS[idx], 2)
		y = startY - 15 if startY - 15 > 15 else startY + 15
		cv2.putText(image, label, (startX, y),
			cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)

deploy.prototxt :

input: "data"
input_shape {
  dim: 1
  dim: 3
  dim: 384
  dim: 1248
}
layer {
  name: "deploy_transform"
  type: "Power"
  bottom: "data"
  top: "transformed_data"
  power_param {
    shift: -127.0
  }
}
layer {
  name: "conv1/7x7_s2"
  type: "Convolution"
  bottom: "transformed_data"
  top: "conv1/7x7_s2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "conv1/relu_7x7"
  type: "ReLU"
  bottom: "conv1/7x7_s2"
  top: "conv1/7x7_s2"
}
layer {
  name: "pool1/3x3_s2"
  type: "Pooling"
  bottom: "conv1/7x7_s2"
  top: "pool1/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1"
  type: "LRN"
  bottom: "pool1/3x3_s2"
  top: "pool1/norm1"
  lrn_param {
    local_size: 5
    alpha: 9.99999974738e-05
    beta: 0.75
  }
}
layer {
  name: "conv2/3x3_reduce"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "conv2/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "conv2/relu_3x3_reduce"
  type: "ReLU"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3_reduce"
}
layer {
  name: "conv2/3x3"
  type: "Convolution"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "conv2/relu_3x3"
  type: "ReLU"
  bottom: "conv2/3x3"
  top: "conv2/3x3"
}
layer {
  name: "conv2/norm2"
  type: "LRN"
  bottom: "conv2/3x3"
  top: "conv2/norm2"
  lrn_param {
    local_size: 5
    alpha: 9.99999974738e-05
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2"
  type: "Pooling"
  bottom: "conv2/norm2"
  top: "pool2/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3a/relu_1x1"
  type: "ReLU"
  bottom: "inception_3a/1x1"
  top: "inception_3a/1x1"
}
layer {
  name: "inception_3a/3x3_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3_reduce"
}
layer {
  name: "inception_3a/3x3"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3a/relu_3x3"
  type: "ReLU"
  bottom: "inception_3a/3x3"
  top: "inception_3a/3x3"
}
layer {
  name: "inception_3a/5x5_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5_reduce"
}
layer {
  name: "inception_3a/5x5"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3a/relu_5x5"
  type: "ReLU"
  bottom: "inception_3a/5x5"
  top: "inception_3a/5x5"
}
layer {
  name: "inception_3a/pool"
  type: "Pooling"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj"
  type: "Convolution"
  bottom: "inception_3a/pool"
  top: "inception_3a/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/pool_proj"
}
layer {
  name: "inception_3a/output"
  type: "Concat"
  bottom: "inception_3a/1x1"
  bottom: "inception_3a/3x3"
  bottom: "inception_3a/5x5"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/output"
}
layer {
  name: "inception_3b/1x1"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3b/relu_1x1"
  type: "ReLU"
  bottom: "inception_3b/1x1"
  top: "inception_3b/1x1"
}
layer {
  name: "inception_3b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3_reduce"
}
layer {
  name: "inception_3b/3x3"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3b/relu_3x3"
  type: "ReLU"
  bottom: "inception_3b/3x3"
  top: "inception_3b/3x3"
}
layer {
  name: "inception_3b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5_reduce"
}
layer {
  name: "inception_3b/5x5"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3b/relu_5x5"
  type: "ReLU"
  bottom: "inception_3b/5x5"
  top: "inception_3b/5x5"
}
layer {
  name: "inception_3b/pool"
  type: "Pooling"
  bottom: "inception_3a/output"
  top: "inception_3b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj"
  type: "Convolution"
  bottom: "inception_3b/pool"
  top: "inception_3b/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/pool_proj"
}
layer {
  name: "inception_3b/output"
  type: "Concat"
  bottom: "inception_3b/1x1"
  bottom: "inception_3b/3x3"
  bottom: "inception_3b/5x5"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/output"
}
layer {
  name: "pool3/3x3_s2"
  type: "Pooling"
  bottom: "inception_3b/output"
  top: "pool3/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_4a/1x1"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4a/relu_1x1"
  type: "ReLU"
  bottom: "inception_4a/1x1"
  top: "inception_4a/1x1"
}
layer {
  name: "inception_4a/3x3_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3_reduce"
}
layer {
  name: "inception_4a/3x3"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4a/relu_3x3"
  type: "ReLU"
  bottom: "inception_4a/3x3"
  top: "inception_4a/3x3"
}
layer {
  name: "inception_4a/5x5_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5_reduce"
}
layer {
  name: "inception_4a/5x5"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4a/relu_5x5"
  type: "ReLU"
  bottom: "inception_4a/5x5"
  top: "inception_4a/5x5"
}
layer {
  name: "inception_4a/pool"
  type: "Pooling"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj"
  type: "Convolution"
  bottom: "inception_4a/pool"
  top: "inception_4a/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/pool_proj"
}
layer {
  name: "inception_4a/output"
  type: "Concat"
  bottom: "inception_4a/1x1"
  bottom: "inception_4a/3x3"
  bottom: "inception_4a/5x5"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/output"
}
layer {
  name: "inception_4b/1x1"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4b/relu_1x1"
  type: "ReLU"
  bottom: "inception_4b/1x1"
  top: "inception_4b/1x1"
}
layer {
  name: "inception_4b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3_reduce"
}
layer {
  name: "inception_4b/3x3"
  type: "Convolution"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 224
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4b/relu_3x3"
  type: "ReLU"
  bottom: "inception_4b/3x3"
  top: "inception_4b/3x3"
}
layer {
  name: "inception_4b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5_reduce"
}
layer {
  name: "inception_4b/5x5"
  type: "Convolution"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4b/relu_5x5"
  type: "ReLU"
  bottom: "inception_4b/5x5"
  top: "inception_4b/5x5"
}
layer {
  name: "inception_4b/pool"
  type: "Pooling"
  bottom: "inception_4a/output"
  top: "inception_4b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4b/pool_proj"
  type: "Convolution"
  bottom: "inception_4b/pool"
  top: "inception_4b/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/pool_proj"
}
layer {
  name: "inception_4b/output"
  type: "Concat"
  bottom: "inception_4b/1x1"
  bottom: "inception_4b/3x3"
  bottom: "inception_4b/5x5"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/output"
}
layer {
  name: "inception_4c/1x1"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4c/relu_1x1"
  type: "ReLU"
  bottom: "inception_4c/1x1"
  top: "inception_4c/1x1"
}
layer {
  name: "inception_4c/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4c/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3_reduce"
}
layer {
  name: "inception_4c/3x3"
  type: "Convolution"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4c/relu_3x3"
  type: "ReLU"
  bottom: "inception_4c/3x3"
  top: "inception_4c/3x3"
}
layer {
  name: "inception_4c/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4c/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5_reduce"
}
layer {
  name: "inception_4c/5x5"
  type: "Convolution"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4c/relu_5x5"
  type: "ReLU"
  bottom: "inception_4c/5x5"
  top: "inception_4c/5x5"
}
layer {
  name: "inception_4c/pool"
  type: "Pooling"
  bottom: "inception_4b/output"
  top: "inception_4c/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4c/pool_proj"
  type: "Convolution"
  bottom: "inception_4c/pool"
  top: "inception_4c/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4c/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/pool_proj"
}
layer {
  name: "inception_4c/output"
  type: "Concat"
  bottom: "inception_4c/1x1"
  bottom: "inception_4c/3x3"
  bottom: "inception_4c/5x5"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/output"
}
layer {
  name: "inception_4d/1x1"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4d/relu_1x1"
  type: "ReLU"
  bottom: "inception_4d/1x1"
  top: "inception_4d/1x1"
}
layer {
  name: "inception_4d/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 144
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4d/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3_reduce"
}
layer {
  name: "inception_4d/3x3"
  type: "Convolution"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 288
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4d/relu_3x3"
  type: "ReLU"
  bottom: "inception_4d/3x3"
  top: "inception_4d/3x3"
}
layer {
  name: "inception_4d/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4d/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5_reduce"
}
layer {
  name: "inception_4d/5x5"
  type: "Convolution"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4d/relu_5x5"
  type: "ReLU"
  bottom: "inception_4d/5x5"
  top: "inception_4d/5x5"
}
layer {
  name: "inception_4d/pool"
  type: "Pooling"
  bottom: "inception_4c/output"
  top: "inception_4d/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4d/pool_proj"
  type: "Convolution"
  bottom: "inception_4d/pool"
  top: "inception_4d/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4d/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/pool_proj"
}
layer {
  name: "inception_4d/output"
  type: "Concat"
  bottom: "inception_4d/1x1"
  bottom: "inception_4d/3x3"
  bottom: "inception_4d/5x5"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/output"
}
layer {
  name: "inception_4e/1x1"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4e/relu_1x1"
  type: "ReLU"
  bottom: "inception_4e/1x1"
  top: "inception_4e/1x1"
}
layer {
  name: "inception_4e/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4e/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3_reduce"
}
layer {
  name: "inception_4e/3x3"
  type: "Convolution"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4e/relu_3x3"
  type: "ReLU"
  bottom: "inception_4e/3x3"
  top: "inception_4e/3x3"
}
layer {
  name: "inception_4e/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4e/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5_reduce"
}
layer {
  name: "inception_4e/5x5"
  type: "Convolution"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4e/relu_5x5"
  type: "ReLU"
  bottom: "inception_4e/5x5"
  top: "inception_4e/5x5"
}
layer {
  name: "inception_4e/pool"
  type: "Pooling"
  bottom: "inception_4d/output"
  top: "inception_4e/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4e/pool_proj"
  type: "Convolution"
  bottom: "inception_4e/pool"
  top: "inception_4e/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_4e/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/pool_proj"
}
layer {
  name: "inception_4e/output"
  type: "Concat"
  bottom: "inception_4e/1x1"
  bottom: "inception_4e/3x3"
  bottom: "inception_4e/5x5"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/output"
}
layer {
  name: "inception_5a/1x1"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5a/relu_1x1"
  type: "ReLU"
  bottom: "inception_5a/1x1"
  top: "inception_5a/1x1"
}
layer {
  name: "inception_5a/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0900000035763
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3_reduce"
}
layer {
  name: "inception_5a/3x3"
  type: "Convolution"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5a/relu_3x3"
  type: "ReLU"
  bottom: "inception_5a/3x3"
  top: "inception_5a/3x3"
}
layer {
  name: "inception_5a/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.20000000298
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5_reduce"
}
layer {
  name: "inception_5a/5x5"
  type: "Convolution"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5a/relu_5x5"
  type: "ReLU"
  bottom: "inception_5a/5x5"
  top: "inception_5a/5x5"
}
layer {
  name: "inception_5a/pool"
  type: "Pooling"
  bottom: "inception_4e/output"
  top: "inception_5a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5a/pool_proj"
  type: "Convolution"
  bottom: "inception_5a/pool"
  top: "inception_5a/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/pool_proj"
}
layer {
  name: "inception_5a/output"
  type: "Concat"
  bottom: "inception_5a/1x1"
  bottom: "inception_5a/3x3"
  bottom: "inception_5a/5x5"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/output"
}
layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "inception_5a/output"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.10000000149
    }
    bias_filler {
      type: "constant"
      value: 0.20000000298
    }
  }
}
layer {
  name: "inception_5b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/pool_proj"
}
layer {
  name: "inception_5b/output"
  type: "Concat"
  bottom: "inception_5b/1x1"
  bottom: "inception_5b/3x3"
  bottom: "inception_5b/5x5"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/output"
}
layer {
  name: "pool5/drop_s1"
  type: "Dropout"
  bottom: "inception_5b/output"
  top: "pool5/drop_s1"
  dropout_param {
    dropout_ratio: 0.40000000596
  }
}
layer {
  name: "cvg/classifier"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "cvg/classifier"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 1
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "coverage/sig"
  type: "Sigmoid"
  bottom: "cvg/classifier"
  top: "coverage"
}
layer {
  name: "bbox/regressor"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "bboxes"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 4
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.0299999993294
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: 'cluster'
  type: 'ClusterDetections'
  bottom: 'coverage'
  bottom: 'bboxes'
  top: 'bbox-list'
  python_param {
    param_str: '1248, 352, 16, 0.6, 3, 0.02, 22, 1'
  }
}

applied what this says and still didn’t work unless i didn’t do it correclty if i didn’t can you please tell me what should i do ?

and getting zeros as coverage :

[INFO] loading model…
[INFO] computing object detections…
[[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]]