**• Hardware Platform Ubuntu 20.04 with Nvidia GeForce GTX 1080 Ti
**• DeepStream 6.3-triton-multiarch Docker image
**• TensorRT 8.5.3
**• NVIDIA GPU Driver version 555.42.02
**• Issue Type: Aborted (core dumped)
**• Detailed Error:
Frames will be saved in frames
Creating streamux
Creating source_bin 0
Creating source bin
source-bin-00
Creating Pgie
Unknown or legacy key specified 'input-blob-names' for group [property]
Creating EGLSink
Playing file file:///opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/deepstream-tickerdetection/test.mp4
Adding elements to Pipeline
Linking elements in the Pipeline
Linking elements in the Pipeline
Starting pipeline
0:00:01.942882558 13033 0x2c3e090 INFO nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1988> [UID = 1]: deserialized trt engine from :/opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/deepstream-tickerdetection/det_model.engine
WARNING: [TRT]: The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
INFO: ../nvdsinfer/nvdsinfer_model_builder.cpp:610 [Implicit Engine Info]: layers num: 2
0 INPUT kFLOAT input 360x640
1 OUTPUT kFLOAT output 180x320
python3: nvdsinfer_backend.cpp:135: virtual bool nvdsinfer::TrtBackendContext::canSupportBatchDims(int, const NvDsInferBatchDims&): Assertion `m_AllLayers[bindingIdx].inferDims.numDims == batchDims.dims.numDims' failed.
Aborted (core dumped)
I think, I am unable to write correct config.txt file. My current config.txt file is as follows:
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
tlt-model-key=none
#infer-dims=1;360;640
onnx-file=/opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/deepstream-tickerdetection/det_model.onnx
model-engine-file=/opt/nvidia/deepstream/deepstream-6.3/sources/deepstream_python_apps/apps/deepstream-tickerdetection/det_model.engine
#labelfile-path=</path/to/your/label_file.txt>
#input-blob-names=input
output-blob-names=output
infer-dims=360;640;1
input-blob-names=input;info
force-implicit-batch-dim=1
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
interval=0
gie-unique-id=1
#change the input to gray scale
model-color-format=1
network-type=3
#output-blob-names=output
#parse-bbox-func-name=NvDsInferParseCustomSegMask
#custom-lib-path=</path/to/your/customparser.so>
The model I’m using is a custom segmentation model that takes in gray scale images with dimensions, The model takes input as [1,360,640] and outputs [1, 180, 320] as the binary mask. Here when i run python app, it also says that
Unknown or legacy key specified 'input-blob-names' for group [property]
I have read that it’s important to specify the input and output layers names of the tensors being used in the model. Any help on this will be much appreciated.