Description
A clear and concise description of the bug or issue.
Environment
TensorRT Version: 7.1.3
GPU Type: Tegra PCIe x4/x8 Endpoint/Root Complex
Nvidia Driver Version: nvidia-l4t-3d-core 32.4.4
CUDA Version: 10.2
CUDNN Version:
Operating System + Version: Ubuntu 18.04.5 LTS
Python Version (if applicable):
TensorFlow Version (if applicable):
PyTorch Version (if applicable): 1.0
Baremetal or Container (if container which image + tag):
Relevant Files
onnx model information:
ONNX IR version: 0.0.3
Opset version: 9
Producer name: pytorch
Producer version: 0.4
Domain:
Model version: 0
Doc string:
error information:
ERROR: …/builder/cudnnBuilderGraphShapeAnalyzer.cpp (2467) - Assertion Error in updateExtent: 0 (layer validation and shape analyzer disagree about dimensions)
Assertion `engine’ failed.
Steps To Reproduce
this is my deploy code:
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(iLogger_);
// nvinfer1::INetworkDefinition* network = builder->createNetwork();
const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch);
LOG(INFO)<<"Begin parsing "<<model_.name<<" model from "<<model_file_;
auto parser = nvonnxparser::createParser(*network, iLogger_);
// parser = nvonnxparser::createParser(*network, iLogger_);
int verbosity = static_cast<int>(nvinfer1::ILogger::Severity::kWARNING);
if (!parser->parseFromFile(model_file_.c_str(), verbosity))
{
// std::cout<<"Failed to parse onnx file"<<std::endl;
LOG(ERROR)<<"Failed to parse model_file from "<<model_file_<<"!";
exit(EXIT_FAILURE);
}
LOG(INFO)<<"End parsing "<<model_.name<<" model from "<<model_file_<<".";
builder->setMaxBatchSize(1);
builder->setMaxWorkspaceSize(1 << 15);
nvinfer1::ICudaEngine* engine = builder->buildCudaEngine(*network);
assert(engine);
when i run it , it would crash.i think maybe pytorch version is too low.