I am creating optical flow images using the script below.
My server has 4 A30 Gpus.
When I run the following shell script,
#!/bin/bash
dirs=/workspace/Nyan/cv_samples_v1.3.0/action_recognition_net/data/selfinf
declare -a RGB_PATH_LIST
i=0
for entry in "$dirs"/*
do
RGB_PATH_LIST[i++]="$entry"
done
#for((i=1;i<=${#RGB_PATH_LIST[@]};i++))
#do
# echo "${RGB_PATH_LIST[i]}"
#done
for((i=0;i<${#RGB_PATH_LIST[@]};i++)); do
if [ ${RGB_PATH_LIST[i]} != "NULL" ]; then
#echo "${RGB_PATH_LIST[i]}g"
mkdir -p "${RGB_PATH_LIST[i]}/flow"
mkdir -p "${RGB_PATH_LIST[i]}/of"
./AppOFCuda --input=${RGB_PATH_LIST[i]}/"rgb"/"*.png" --output=${RGB_PATH_LIST[i]}/"flow" --preset=fast --gridSize=1 \
&&
python ./convert_of.py --input_flow_folder ${RGB_PATH_LIST[i]}/"flow" --output_folder ${RGB_PATH_LIST[i]}/"of" &
fi
done
wait
for((i=0;i<${#RGB_PATH_LIST[@]};i++)); do
if [ ${RGB_PATH_LIST[i]} != "NULL" ]; then
rm -r ${RGB_PATH_LIST[i]}/"flow"
rm -r ${RGB_PATH_LIST[i]}/"of"
fi
done
I have errors as
GPU in use: NVIDIA A30
GPU in use: NVIDIA A30
GPU in use: NVIDIA A30
GPU in use: NVIDIA A30
GPU in use: NVIDIA A30
main : CUDA driver API error CUDA_ERROR_OUT_OF_MEMORY at /opt/tylerz/tlt_dev/action_recognition/convert_dataset/Optical_Flow_SDK_2.0.23/NvOFBasicSamples/AppOFCuda/AppOFCuda.cpp;431
main : CUDA driver API error CUDA_ERROR_OUT_OF_MEMORY at /opt/tylerz/tlt_dev/action_recognition/convert_dataset/Optical_Flow_SDK_2.0.23/NvOFBasicSamples/AppOFCuda/AppOFCuda.cpp;431
main : CUDA driver API error CUDA_ERROR_OUT_OF_MEMORY at /opt/tylerz/tlt_dev/action_recognition/convert_dataset/Optical_Flow_SDK_2.0.23/NvOFBasicSamples/AppOFCuda/AppOFCuda.cpp;431
main : CUDA driver API error CUDA_ERROR_OUT_OF_MEMORY at /opt/tylerz/tlt_dev/action_recognition/convert_dataset/Optical_Flow_SDK_2.0.23/NvOFBasicSamples/AppOFCuda/AppOFCuda.cpp;431
You run the script after you “docker run” nvcr.io/nvidia/tao/tao-toolkit:5.0.0-pyt , right? Can you share the command? And what is the result of nvidia-smi now?