Hi,
I have tested this on TensorRT 8.0.1 and 8.2.1 on both the Jetson Nano Dev Kit and the Jetson Nano module. When running my example C++ application, I encounter the following error:
ERROR: 1: [hardwareContext.cpp::configure::92] Error Code 1: Cudnn (CUDNN_STATUS_MAPPING_ERROR)
I used trtexec to convert my ONNX model to a TensorRT engine with the following command:
trtexec --onnx=face_landmarks_detector_1x3x256x256.onnx --fp16 --saveEngine=face.engine
My C++ application is compiled with:
g++ -std=c++17 -I/usr/local/cuda-10.2/targets/aarch64-linux/include \
-I/usr/include/aarch64-linux-gnu -I/usr/lib/aarch64-linux-gnu/tegra/ \
InferenceModel.cpp main.cpp -o facenet \
-L/usr/local/cuda-10.2/targets/aarch64-linux/lib/ \
-lnvinfer -lnvonnxparser -lcudart -lnvinfer_plugin \
`pkg-config --cflags --libs opencv4`
Interestingly, the same model and commands work without any errors on my RTX 3090 running my c++ code. Additionally, running on the jetson nano:
trtexec --loadEngine=face.engine
does not produce any errors. So problem is with either onnx on jetson nano or c++ compiled for jetson nano?
I have attached a tar archive containing all the required files:
face_landmarks_detector_1x3x256x256.onnx
InferenceModel.cpp
InferenceModel.h
main.cpp
nano_face.engine
Any insights on what might be causing this issue would be greatly appreciated!
Thanks!
trt_error.tar.gz (6.0 MB)