Do you have
$ tlt info --verbose
or
$ tao info --verbose
I test again with latest 3.21.08-py3 docker. The deepstream can get detection with the trt int8 engine. You can try with my step.
$ docker pull nvcr.io/nvidia/tao/tao-toolkit-tf:v3.21.08-py3
Then,
$ docker run –-runtime=nvidia -it --rm -v localfolder:/dockerfolder nvcr.io/nvidia/tao/tao-toolkit-tf:v3.21.08-py3 /bin/bash
Then:
- Run a training with cspdarknet53 backbone with KITTI dataset.
Only run for 10 epochs. Then get the tlt model. - Generate etlt model and also trt int8 engine
yolo_v4 export -k nvidia_tlt -m epoch_010.tlt -e spec.txt --engine_file 384_1248.engine --data_type int8 --batch_size 8 --batches 10 --cal_cache_file export/cal.bin --cal_data_file export/cal.tensorfile --cal_image_dir /kitti_path/training/image_2 -o 384_1248.etlt
Then copy the cal.bin and .etlt file into one machine (Mine is Geforce 1080Ti) and then run inference as below.
morganh@dl:/opt/nvidia/deepstream/deepstream-6.0/samples/configs/tao_pretrained_models/deepstream_tao_apps$ ./apps/tao_detection/ds-tao-detection -c ./configs/yolov4_tao/pgie_yolov4_tao_config.txt -i /opt/nvidia/deepstream/deepstream-6.0/samples/streams/sample_720p.h264 -d
$ cat ./configs/yolov4_tao/pgie_yolov4_tao_config.txt
[property]
gpu-id=0
net-scale-factor=1.0
offsets=103.939;116.779;123.68
model-color-format=1
labelfile-path=yolov4_labels_kitti.txt
model-engine-file=../../models/yolov4/kitti/384_1248_cspdarknet53.etlt_b1_gpu0_int8.engine
int8-calib-file=../../models/yolov4/kitti/cal.bin
tlt-encoded-model=../../models/yolov4/kitti/384_1248_cspdarknet53.etlt
tlt-model-key=nvidia_tlt
infer-dims=3;384;1248
maintain-aspect-ratio=1
uff-input-order=0
uff-input-blob-name=Input
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
num-detected-classes=3
interval=0
gie-unique-id=1
is-classifier=0
#network-type=0
cluster-mode=3
output-blob-names=BatchedNMS
parse-bbox-func-name=NvDsInferParseCustomBatchedNMSTLT
custom-lib-path=../../post_processor/libnvds_infercustomparser_tao.so
[class-attrs-all]
pre-cluster-threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0
$ cat configs/yolov4_tao/yolov4_labels_kitti.txt
car
cyclist
pedestrian
Thanks i will try this now
Now i have the engine file with me
To measure the inference performance :
I can’t find the trtexec file
when i search for trtexec i get some location pointing towards the Tensort file,should i make trtexec and run this script at that location.
For trtexec, if TensorRT is installed in one device, there is the code to build trtexec in /usr/src/tensorrt/samples/trtexec/ where you can run make to build it.
Once it’s built, then it should be located in /usr/src/tensorrt/bin , or a similar path.
Doc:
Thanks,this worked
for mp4 stream on yoloV4 can i use these as they include
- 2D Bodypose
- Facial Landmarks Estimation
- EmotionNet
- Gaze Estimation
- GestureNet
- HeartRateNet
very different from my use case and can you tell me what should i run to get live metadata of the inference,Thank you
The apps which I mentioned can run with an mp4 file. So, you can leverage the code how to run mp4 file.
Ok thank
This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.