Description
Is there a way to convert detectron2 to a more compact model for faster inferencing ?
Environment
TensorRT Version :
GPU Type :
Nvidia Driver Version :
CUDA Version :
CUDNN Version :
Operating System + Version :
Python Version (if applicable) :
TensorFlow Version (if applicable) :
PyTorch Version (if applicable) :
Baremetal or Container (if container which image + tag) :
Relevant Files
Please attach or include links to any models, data, files, or scripts necessary to reproduce your issue. (Github repo, Google Drive, Dropbox, etc.)
Steps To Reproduce
Please include:
Exact steps/commands to build your repro
Exact steps/commands to run your repro
Full traceback of errors encountered
NVES
April 29, 2022, 8:07pm
3
Hi,
Can you try running your model with trtexec command, and share the “”–verbose"" log in case if the issue persist
You can refer below link for all the supported operators list, in case any operator is not supported you need to create a custom plugin to support that operation
<!--- SPDX-License-Identifier: Apache-2.0 -->
# Supported ONNX Operators
TensorRT 8.4 supports operators up to Opset 17. Latest information of ONNX operators can be found [here](https://github.com/onnx/onnx/blob/master/docs/Operators.md)
TensorRT supports the following ONNX data types: DOUBLE, FLOAT32, FLOAT16, INT8, and BOOL
> Note: There is limited support for INT32, INT64, and DOUBLE types. TensorRT will attempt to cast down INT64 to INT32 and DOUBLE down to FLOAT, clamping values to `+-INT_MAX` or `+-FLT_MAX` if necessary.
See below for the support matrix of ONNX operators in ONNX-TensorRT.
## Operator Support Matrix
| Operator | Supported | Supported Types | Restrictions |
|---------------------------|------------|-----------------|------------------------------------------------------------------------------------------------------------------------|
| Abs | Y | FP32, FP16, INT32 |
| Acos | Y | FP32, FP16 |
| Acosh | Y | FP32, FP16 |
| Add | Y | FP32, FP16, INT32 |
This file has been truncated. show original
Also, request you to share your model and script if not shared already so that we can help you better.
Meanwhile, for some common errors and queries please refer to below link:
Thanks!