I can reproduce this problem on resnet model. I am new to distillation and I may make mistakes in using the distillation.
This model is base on resnet152 and trained on hymenoptera (https://download.pytorch.org/tutorial/hymenoptera_data.zip)
t2d is for distillation, t2dt is for testing.
t2d.py.txt (1.8 KB)
t2dt.py.txt (4.7 KB)
The accuracy of the trained model is 0.9477, and the distilled model is only 0.5425.
The log is below:
(pruning) user@server/data/WS/PruningWS/code$ cd /data/WS/PruningWS/code ; /usr/bin/env /data/WS/anaconda3/envs/pruning/bin/python /home/jzyq/.vscode/extensions/ms-python.debugpy-2024.10.0-linux-x64/bundled/libs/debugpy/adapter/…/…/debugpy/launcher 34285 – /data/WS/PruningWS/code/t2dt.py --config config/mae1-prune3.25.yaml --gpus 0 --run …/run/ --cycle 11
/data/WS/anaconda3/envs/pruning/lib/python3.11/site-packages/modelopt/torch/quantization/tensor_quant.py:92: FutureWarning: torch.library.impl_abstract
was renamed to torch.library.register_fake
. Please use that instead; we will remove torch.library.impl_abstract
in a future version of PyTorch.
scaled_e4m3_abstract = torch.library.impl_abstract(“trt::quantize_fp8”)(
TRAINING 1…
VALIDATING 2…
Loss: 0.1485 Acc: 0.9477
ORIGINAL MODEL: 4.07870, 3.39219
/data/WS/anaconda3/envs/pruning/lib/python3.11/tempfile.py:934: ResourceWarning: Implicitly cleaning up <TemporaryDirectory ‘/tmp/tmpkde989bv’>
_warnings.warn(warn_message, ResourceWarning)
(pruning) user@server/data/WS/PruningWS/code$ ^C
(pruning) user@server/data/WS/PruningWS/code$ cd /data/WS/PruningWS/code ; /usr/bin/env /data/WS/anaconda3/envs/pruning/bin/python /home/jzyq/.vscode/extensions/ms-python.debugpy-2024.10.0-linux-x64/bundled/libs/debugpy/adapter/…/…/debugpy/launcher 43897 – /data/WS/PruningWS/code/t2dt.py --config config/mae1-prune3.25.yaml --gpus 0 --run …/run/ --cycle 11
/data/WS/anaconda3/envs/pruning/lib/python3.11/site-packages/modelopt/torch/quantization/tensor_quant.py:92: FutureWarning: torch.library.impl_abstract
was renamed to torch.library.register_fake
. Please use that instead; we will remove torch.library.impl_abstract
in a future version of PyTorch.
scaled_e4m3_abstract = torch.library.impl_abstract(“trt::quantize_fp8”)(
TRAINING 1…
VALIDATING 2…
Loss: 5.8928 Acc: 0.5425
DISTILL MODEL: 3.14478, 2.89372
/data/WS/anaconda3/envs/pruning/lib/python3.11/tempfile.py:934: ResourceWarning: Implicitly cleaning up <TemporaryDirectory ‘/tmp/tmpmuv5fgua’>
_warnings.warn(warn_message, ResourceWarning)