Error: a __device__ function call cannot be configured

Hello, I want to implement CDP for a basic forward function (I will call the forward function to many times at the same time (also from a cuda function) and because of that I want to use CDP)

Here’s the code that I’m trying to run;

__device__ void NNFeedForwardNormalMultiple(double* __restrict__ values, double* __restrict__ weigths, double* result, int inputsize, int outputsize) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    int outputidx = idx / outputsize;
    int inputidx = idx % outputsize;

    if (outputidx >= outputsize || inputidx >= inputsize) {
        return;
    }

    atomicAdd(&result[outputidx], values[inputidx] * weigths[outputsize*outputidx + inputidx]);
}

__device__ void NNFeedForwardNormalActivate(double* __restrict__ biases, double* result, int size) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx >= size) {
        return;
    }

    result[idx] = 1.0 / (1.0 + exp(-(result[idx] + biases[idx])));
}

__global__ void NNFeedForwardNormal(double* __restrict__ values, double* __restrict__ weigths, double* result, double* __restrict__ biases, int inputsize, int outputsize) {
    int blocksize = (inputsize * outputsize + THREADS_PER_BLOCK - 1)/THREADS_PER_BLOCK;
    NNFeedForwardNormalMultiple<<<blocksize, THREADS_PER_BLOCK>>>(values, weigths, result, inputsize, outputsize);
    cudaDeviceSynchronize();
    NNFeedForwardNormalActivate<<<(outputsize + THREADS_PER_BLOCK - 1)/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(biases, result, outputsize);
}

I also tried to run CDP from a device function like this but still gave me the same error;

__device__ void NNFeedForwardNormalMultiple(double* __restrict__ values, double* __restrict__ weigths, double* result, int inputsize, int outputsize) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    int outputidx = idx / outputsize;
    int inputidx = idx % outputsize;

    if (outputidx >= outputsize || inputidx >= inputsize) {
        return;
    }

    atomicAdd(&result[outputidx], values[inputidx] * weigths[outputsize*outputidx + inputidx]);
}

__device__ void NNFeedForwardNormalActivate(double* __restrict__ biases, double* result, int size) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx >= size) {
        return;
    }

    result[idx] = 1.0 / (1.0 + exp(-(result[idx] + biases[idx])));
}

__device__ void NNFeedForwardNormal(double* __restrict__ values, double* __restrict__ weigths, double* result, double* __restrict__ biases, int inputsize, int outputsize) {
    int blocksize = (inputsize * outputsize + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
    
    NNFeedForwardNormalMultiple<<<blocksize, THREADS_PER_BLOCK>>>(values, weigths, result, inputsize, outputsize);
    NNFeedForwardNormalActivate<<<(outputsize + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(biases, result, outputsize);
}

__global__ void NNFeedForwardNormalWrapper(double* __restrict__ values, double* __restrict__ weigths, double* result, double* __restrict__ biases, int inputsize, int outputsize) {
    NNFeedForwardNormal(values, weigths, result, biases, inputsize, outputsize);
}

And also tried cudaLaunchKernel function and using global instead of device but they didn’t work either. I’m using -rdc=true flag too and also my arch is sm_75 which should support CDP