ERROR || Training trafficcamnet model || Cannot reshape a tensor with 119808 elements to shape

I am trying to train the trafficcamnet model on custom dataset, below are the steps which i already done but now i stuck at point and unable to idetified the issue.
1 ) Follow the step which is written in this blog "training model
2 ) Create the custom dataset
Folder : /home/trainval/lables/{example.txt}
example.txt :

heavy 0.00 0 0.00 0.649219 0.464352 0.176563 0.249074 0.00 0.00 0.00 0.00 0.00 0.00 0.00
heavy 0.00 0 0.00 0.824740 0.435185 0.043229 0.062963 0.00 0.00 0.00 0.00 0.00 0.00 0.00
heavy 0.00 0 0.00 0.866927 0.443519 0.055729 0.135185 0.00 0.00 0.00 0.00 0.00 0.00 0.00
heavy 0.00 0 0.00 0.925781 0.631019 0.148438 0.478704 0.00 0.00 0.00 0.00 0.00 0.00 0.00
heavy 0.00 0 0.00 0.890365 0.455556 0.054688 0.146296 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Image folder : /home/trainval/images/{example.jpg}
Model folder : /home/trainval/model/resnet18_trafficcamnet.tlt

  1. Created the tfrecords using tlt-dataset-convert -d $conversion_spec_file_trainval -o $tfrecord_path_trainval
    tfrecord folder : /root/trainingdataset/tfrecords/{-fold-000-of-002-shard-00004-of-00010, -fold-000-of-002-shard-00008-of-00010, …}

4 ) create spec file having the all config :

random_seed: 42
dataset_config {
  data_sources {
    tfrecords_path: "/home/trainval/tfrecords/*"
    image_directory_path: "/home/trainval/images"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "three_wheeler"
    value: "three_wheeler"
  }
  target_class_mapping {
    key: "two_wheeler"
    value: "twoe_wheeler"
  }
  target_class_mapping {
    key: "four_wheeler"
    value: "four_wheeler"
  }
  target_class_mapping {
    key: "heavy"
    value: "heavy"
  }
  validation_fold: 0
}
augmentation_config {
  preprocessing {
    output_image_width: 1248
    output_image_height: 384
    min_bbox_width: 1.0
    min_bbox_height: 1.0
    output_image_channel: 3
  }
  spatial_augmentation {
    hflip_probability: 0.5
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
postprocessing_config {
  target_class_config {
    key: "three_wheeler"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.20000000298
        dbscan_min_samples: 1
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "two_wheeler"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00499999988824
        dbscan_eps: 0.15000000596
        dbscan_min_samples: 1
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "four_wheeler"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 1
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "heavy"
    value {
      clustering_config {
        clustering_algorithm: DBSCAN
        dbscan_confidence_threshold: 0.9
        coverage_threshold: 0.00749999983236
        dbscan_eps: 0.230000004172
        dbscan_min_samples: 1
        minimum_bounding_box_height: 20
      }
    }
  }
}
model_config {
  pretrained_model_file: "/home/trainval/model/resnet18_trafficcamnet.tlt"
  num_layers: 18
  use_batch_norm: true
  load_graph: true
  objective_set {
    bbox {
      scale: 35.0
      offset: 0.5
    }
    cov {
    }
  }
  arch: "resnet"
}
evaluation_config {
  validation_period_during_training: 10
  first_validation_epoch: 30
  minimum_detection_ground_truth_overlap {
    key: "two_wheeler"
    value: 0.699999988079
  }
  minimum_detection_ground_truth_overlap {
    key: "three_wheeler"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "four_wheeler"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "heavy"
    value: 0.5
  }
  evaluation_box_config {
    key: "two_wheeler"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "three_wheeler"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "four_wheeler"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "heavy"
    value {
      minimum_height: 20
      maximum_height: 9999
      minimum_width: 10
      maximum_width: 9999
    }
  }
  average_precision_mode: INTEGRATE
}
cost_function_config {
  target_classes {
    name: "four_wheeler"
    class_weight: 1.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "three_wheeler"
    class_weight: 8.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "two_wheeler"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "heavy"
    class_weight: 4.0
    coverage_foreground_weight: 0.0500000007451
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: false
  max_objective_weight: 0.999899983406
  min_objective_weight: 9.99999974738e-05
}
training_config {
  batch_size_per_gpu: 4
  num_epochs: 120
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-07
      max_learning_rate: 5e-05
      soft_start: 0.10000000149
      annealing: 0.699999988079
    }
  }
  regularizer {
    type: L1
    weight: 3.00000002618e-09
  }
  optimizer {
    adam {
      epsilon: 9.99999993923e-09
      beta1: 0.899999976158
      beta2: 0.999000012875
    }
  }
  cost_scaling {
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
  checkpoint_interval: 10
}
bbox_rasterizer_config {
  target_class_config {
    key: "two_wheeler"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.40000000596
      cov_radius_y: 0.40000000596
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "three_wheeler"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "four_wheeler"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "heavy"
    value {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 1.0
      cov_radius_y: 1.0
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.400000154972
}

5 ) Finally as i run the training command : “detectnet_v2 train -e /home/trainval/dataset3.config -r /home/trainval/model/trafficcamnet_vpruned_onnx_v1.0.4 -k tlt_encode”

ERROR : ValueError: Cannot reshape a tensor with 119808 elements to shape [4,4,4,34,60] (130560 elements) for ‘reshape_1_1/Reshape’ (op: ‘Reshape’) with input shapes: [4,16,24,78], [5] and with input tensors computed as partial shapes: input[1] = [4,4,4,34,60].

Please suggest the solution how can i fix it or is it something that i am missing.

I found the issue now, issue is in the path in training command and another issue is in the spec config.
RESOLVED