Error using yolov4 in deepstream

Please provide the following information when requesting support.

• Hardware (T4/V100/Xavier/Nano/etc)
Xavier
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc)
Yolo_v4
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)
• Training spec file(If have, please share here)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)
Hi,guys:
I have replaced TensorRT OSS according to the documentation. When I use yolov4 in deepstream, I still get the following error:


Any idea?Thanks.

Can you share the config file?

################################################################################
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
tlt-model-key=tlt_encode
tlt-encoded-model=../models/tao_pretrained_models/trafficcamnet/yolov4_resnet18_epoch_600.etlt
labelfile-path=labels_trafficnet.txt
#int8-calib-file=../models/tao_pretrained_models/trafficcamnet/trafficnet_int8.bin
model-engine-file=../models/tao_pretrained_models/trafficcamnet/yolov4_resnet18_epoch_600.etlt.engine
#input-dims=3;1040;1920;0
#input-dims=3;544;960;0
input-dims=3;384;1248;0
uff-input-blob-name=input_1
batch-size=1
process-mode=1
model-color-format=0
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
num-detected-classes=1
interval=0
gie-unique-id=1
#output-blob-names=output_bbox/BiasAdd;output_cov/Sigmoid
output-blob-names=BatchedNMS_N
[class-attrs-all]
pre-cluster-threshold=0.2
group-threshold=1
## Set eps=0.7 and minBoxes for cluster-mode=1(DBSCAN)
eps=0.2
#minBoxes=3
#maintain-aspect-ratio=1

I think you trained the yolov4_resnet18_epoch_600.etlt on Yolo_v4 network.
For yolo_v4 network, please refer to the config file deepstream_tao_apps/pgie_yolov4_tao_config.txt at master · NVIDIA-AI-IOT/deepstream_tao_apps · GitHub .
Please modify net-scale-factor, uff-input-blob-name , output-blob-names, etc.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.