To stop training at any time, you can press Ctrl+C. You can also restart the training again later using the --resume and --epoch-start flags, so you don’t need to wait for training to complete before testing out the model. (https://github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-cat-dog.md)
<b>This is the command usage:</b>
usage: train.py [-h] [--model-dir MODEL_DIR] [-a ARCH] [--resolution N] [-j N]
[--epochs N] <b>[--start-epoch N]</b> [-b N] [--lr LR] [--momentum M]
[--wd W] [-p N] <i><b>[--resume PATH]</b></i> [-e] [--pretrained]
[--world-size WORLD_SIZE] [--rank RANK] [--dist-url DIST_URL]
[--dist-backend DIST_BACKEND] [--seed SEED] [--gpu GPU]
[--multiprocessing-distributed]
DIR
python3 train.py --model-dir=plants <b>[--resume PATH]</b> <b>[--epoch-start N]</b> ~/datasets/PlantCLEF_Subset
My question is:
–resume PATH, which PATH should I use?
–epoch-start N, What’s N?