How to use onnx file with deepstream-test1-usbcam + Custom models

I tried to change it by deepstream-test2. Primary detector works fine. I think I have problems with tracker and secondary detector.

Edit:
It seems also tracker works fine. Only my custom model from jetson-inference Hello Ai World not working as expected. It is not perfect but was working with jetson-inference. Any ideas welcome. What do i need here to detect if person wearing safety helmet or not ?

My files:

#!/usr/bin/env python3

import sys
sys.path.append('../')
import gi
gi.require_version('Gst', '1.0')
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call

import pyds

import configparser

PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
past_tracking_meta=[0]

def osd_sink_pad_buffer_probe(pad,info,u_data):
    frame_number=0
    #Intiallizing object counter with 0.
    obj_counter = {
        PGIE_CLASS_ID_VEHICLE:0,
        PGIE_CLASS_ID_PERSON:0,
        PGIE_CLASS_ID_BICYCLE:0,
        PGIE_CLASS_ID_ROADSIGN:0
    }
    num_rects=0

    gst_buffer = info.get_buffer()
    if not gst_buffer:
        print("Unable to get GstBuffer ")
        return

    # Retrieve batch metadata from the gst_buffer
    # Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
    # C address of gst_buffer as input, which is obtained with hash(gst_buffer)
    batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
    l_frame = batch_meta.frame_meta_list
    while l_frame is not None:
        try:
            # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
            # The casting is done by pyds.NvDsFrameMeta.cast()
            # The casting also keeps ownership of the underlying memory
            # in the C code, so the Python garbage collector will leave
            # it alone.
           frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
        except StopIteration:
            break

        frame_number=frame_meta.frame_num
        num_rects = frame_meta.num_obj_meta
        l_obj=frame_meta.obj_meta_list
        while l_obj is not None:
            try:
                # Casting l_obj.data to pyds.NvDsObjectMeta
                obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
            except StopIteration:
                break
            obj_counter[obj_meta.class_id] += 1
            try: 
                l_obj=l_obj.next
            except StopIteration:
                break

        # Acquiring a display meta object. The memory ownership remains in
        # the C code so downstream plugins can still access it. Otherwise
        # the garbage collector will claim it when this probe function exits.
        display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
        display_meta.num_labels = 1
        py_nvosd_text_params = display_meta.text_params[0]
        # Setting display text to be shown on screen
        # Note that the pyds module allocates a buffer for the string, and the
        # memory will not be claimed by the garbage collector.
        # Reading the display_text field here will return the C address of the
        # allocated string. Use pyds.get_string() to get the string content.
        py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON])

        # Now set the offsets where the string should appear
        py_nvosd_text_params.x_offset = 10
        py_nvosd_text_params.y_offset = 12

        # Font , font-color and font-size
        py_nvosd_text_params.font_params.font_name = "Serif"
        py_nvosd_text_params.font_params.font_size = 10
        # set(red, green, blue, alpha); set to White
        py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)

        # Text background color
        py_nvosd_text_params.set_bg_clr = 1
        # set(red, green, blue, alpha); set to Black
        py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
        # Using pyds.get_string() to get display_text as string
        print(pyds.get_string(py_nvosd_text_params.display_text))
        pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
        try:
            l_frame=l_frame.next
        except StopIteration:
            break
    #past traking meta data
    if(past_tracking_meta[0]==1):
        l_user=batch_meta.batch_user_meta_list
        while l_user is not None:
            try:
                # Note that l_user.data needs a cast to pyds.NvDsUserMeta
                # The casting is done by pyds.NvDsUserMeta.cast()
                # The casting also keeps ownership of the underlying memory
                # in the C code, so the Python garbage collector will leave
                # it alone
                user_meta=pyds.NvDsUserMeta.cast(l_user.data)
            except StopIteration:
                break
            if(user_meta and user_meta.base_meta.meta_type==pyds.NvDsMetaType.NVDS_TRACKER_PAST_FRAME_META):
                try:
                    # Note that user_meta.user_meta_data needs a cast to pyds.NvDsPastFrameObjBatch
                    # The casting is done by pyds.NvDsPastFrameObjBatch.cast()
                    # The casting also keeps ownership of the underlying memory
                    # in the C code, so the Python garbage collector will leave
                    # it alone
                    pPastFrameObjBatch = pyds.NvDsPastFrameObjBatch.cast(user_meta.user_meta_data)
                except StopIteration:
                    break
                for trackobj in pyds.NvDsPastFrameObjBatch.list(pPastFrameObjBatch):
                    print("streamId=",trackobj.streamID)
                    print("surfaceStreamID=",trackobj.surfaceStreamID)
                    for pastframeobj in pyds.NvDsPastFrameObjStream.list(trackobj):
                        print("numobj=",pastframeobj.numObj)
                        print("uniqueId=",pastframeobj.uniqueId)
                        print("classId=",pastframeobj.classId)
                        print("objLabel=",pastframeobj.objLabel)
                        for objlist in pyds.NvDsPastFrameObjList.list(pastframeobj):
                            print('frameNum:', objlist.frameNum)
                            print('tBbox.left:', objlist.tBbox.left)
                            print('tBbox.width:', objlist.tBbox.width)
                            print('tBbox.top:', objlist.tBbox.top)
                            print('tBbox.right:', objlist.tBbox.height)
                            print('confidence:', objlist.confidence)
                            print('age:', objlist.age)
            try:
                l_user=l_user.next
            except StopIteration:
                break	
    return Gst.PadProbeReturn.OK	


def main(args):
    # Check input arguments
    if len(args) != 2:
        sys.stderr.write("usage: %s <v4l2-device-path>\n" % args[0])
        sys.exit(1)

    # Standard GStreamer initialization
    if(len(args)==3):
        past_tracking_meta[0]=int(args[2])
    GObject.threads_init()
    Gst.init(None)

    # Create gstreamer elements
    # Create Pipeline element that will form a connection of other elements
    print("Creating Pipeline \n ")
    pipeline = Gst.Pipeline()

    if not pipeline:
        sys.stderr.write(" Unable to create Pipeline \n")

    # Source element for reading from the file
    print("Creating Source \n ")
    source = Gst.ElementFactory.make("v4l2src", "usb-cam-source")
    if not source:
        sys.stderr.write(" Unable to create Source \n")

    caps_v4l2src = Gst.ElementFactory.make("capsfilter", "v4l2src_caps")
    if not caps_v4l2src:
        sys.stderr.write(" Unable to create v4l2src capsfilter \n")


    print("Creating Video Converter \n")

    # Adding videoconvert -> nvvideoconvert as not all
    # raw formats are supported by nvvideoconvert;
    # Say YUYV is unsupported - which is the common
    # raw format for many logi usb cams
    # In case we have a camera with raw format supported in
    # nvvideoconvert, GStreamer plugins' capability negotiation
    # shall be intelligent enough to reduce compute by
    # videoconvert doing passthrough (TODO we need to confirm this)


    # videoconvert to make sure a superset of raw formats are supported
    vidconvsrc = Gst.ElementFactory.make("videoconvert", "convertor_src1")
    if not vidconvsrc:
        sys.stderr.write(" Unable to create videoconvert \n")

    # nvvideoconvert to convert incoming raw buffers to NVMM Mem (NvBufSurface API)
    nvvidconvsrc = Gst.ElementFactory.make("nvvideoconvert", "convertor_src2")
    if not nvvidconvsrc:
        sys.stderr.write(" Unable to create Nvvideoconvert \n")

    caps_vidconvsrc = Gst.ElementFactory.make("capsfilter", "nvmm_caps")
    if not caps_vidconvsrc:
        sys.stderr.write(" Unable to create capsfilter \n")

    # Create nvstreammux instance to form batches from one or more sources.
    streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
    if not streammux:
        sys.stderr.write(" Unable to create NvStreamMux \n")

    # Use nvinfer to run inferencing on camera's output,
    # behaviour of inferencing is set through config file
    pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
    if not pgie:
        sys.stderr.write(" Unable to create pgie \n")

    tracker = Gst.ElementFactory.make("nvtracker", "tracker")
    if not tracker:
        sys.stderr.write(" Unable to create tracker \n")

    sgie1 = Gst.ElementFactory.make("nvinfer", "secondary1-nvinference-engine")
    if not sgie1:
        sys.stderr.write(" Unable to make sgie1 \n")

    # Use convertor to convert from NV12 to RGBA as required by nvosd
    nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
    if not nvvidconv:
        sys.stderr.write(" Unable to create nvvidconv \n")

    # Create OSD to draw on the converted RGBA buffer
    nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")

    if not nvosd:
        sys.stderr.write(" Unable to create nvosd \n")

    # Finally render the osd output
    if is_aarch64():
        transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")

    print("Creating EGLSink \n")
    sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
    if not sink:
        sys.stderr.write(" Unable to create egl sink \n")

    print("Playing cam %s " %args[1])
    caps_v4l2src.set_property('caps', Gst.Caps.from_string("video/x-raw, framerate=30/1"))
    caps_vidconvsrc.set_property('caps', Gst.Caps.from_string("video/x-raw(memory:NVMM)"))
    source.set_property('device', args[1])
    streammux.set_property('width', 1920)
    streammux.set_property('height', 1080)
    streammux.set_property('batch-size', 1)
    streammux.set_property('batched-push-timeout', 4000000)
    pgie.set_property('config-file-path', "dstest1_pgie_config.txt")
    sgie1.set_property('config-file-path', "dstest1_sgie1_config.txt")

 #Set properties of tracker
    config = configparser.ConfigParser()
    config.read('dstest1_tracker_config.txt')
    config.sections()

    for key in config['tracker']:
        if key == 'tracker-width' :
            tracker_width = config.getint('tracker', key)
            tracker.set_property('tracker-width', tracker_width)
        if key == 'tracker-height' :
            tracker_height = config.getint('tracker', key)
            tracker.set_property('tracker-height', tracker_height)
        if key == 'gpu-id' :
            tracker_gpu_id = config.getint('tracker', key)
            tracker.set_property('gpu_id', tracker_gpu_id)
        if key == 'll-lib-file' :
            tracker_ll_lib_file = config.get('tracker', key)
            tracker.set_property('ll-lib-file', tracker_ll_lib_file)
        if key == 'll-config-file' :
            tracker_ll_config_file = config.get('tracker', key)
            tracker.set_property('ll-config-file', tracker_ll_config_file)
        if key == 'enable-batch-process' :
            tracker_enable_batch_process = config.getint('tracker', key)
            tracker.set_property('enable_batch_process', tracker_enable_batch_process)
        if key == 'enable-past-frame' :
            tracker_enable_past_frame = config.getint('tracker', key)
            tracker.set_property('enable_past_frame', tracker_enable_past_frame)

    # Set sync = false to avoid late frame drops at the display-sink
    sink.set_property('sync', False)

    print("Adding elements to Pipeline \n")
    pipeline.add(source)
    pipeline.add(caps_v4l2src)
    pipeline.add(vidconvsrc)
    pipeline.add(nvvidconvsrc)
    pipeline.add(caps_vidconvsrc)
    pipeline.add(streammux)
    pipeline.add(pgie)
    pipeline.add(tracker)
    pipeline.add(sgie1)
    pipeline.add(nvvidconv)
    pipeline.add(nvosd)
    pipeline.add(sink)
    if is_aarch64():
        pipeline.add(transform)

    # we link the elements together
    # v4l2src -> nvvideoconvert -> mux -> 
    # nvinfer -> nvvideoconvert -> nvosd -> video-renderer
    print("Linking elements in the Pipeline \n")
    source.link(caps_v4l2src)
    caps_v4l2src.link(vidconvsrc)
    vidconvsrc.link(nvvidconvsrc)
    nvvidconvsrc.link(caps_vidconvsrc)

    sinkpad = streammux.get_request_pad("sink_0")
    if not sinkpad:
        sys.stderr.write(" Unable to get the sink pad of streammux \n")
    srcpad = caps_vidconvsrc.get_static_pad("src")
    if not srcpad:
        sys.stderr.write(" Unable to get source pad of caps_vidconvsrc \n")
    srcpad.link(sinkpad)
    streammux.link(pgie)
    pgie.link(tracker)
    tracker.link(sgie1)
    sgie1.link(nvvidconv)
    nvvidconv.link(nvosd)
    if is_aarch64():
        nvosd.link(transform)
        transform.link(sink)
    else:
        nvosd.link(sink)

    # create an event loop and feed gstreamer bus mesages to it
    loop = GObject.MainLoop()
    bus = pipeline.get_bus()
    bus.add_signal_watch()
    bus.connect ("message", bus_call, loop)

    # Lets add probe to get informed of the meta data generated, we add probe to
    # the sink pad of the osd element, since by that time, the buffer would have
    # had got all the metadata.
    osdsinkpad = nvosd.get_static_pad("sink")
    if not osdsinkpad:
        sys.stderr.write(" Unable to get sink pad of nvosd \n")

    osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)

    # start play back and listen to events
    print("Starting pipeline \n")
    pipeline.set_state(Gst.State.PLAYING)
    try:
        loop.run()
    except:
        pass
    # cleanup
    pipeline.set_state(Gst.State.NULL)

if __name__ == '__main__':
    sys.exit(main(sys.argv))

dstest1_pgie_config.txt

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-file=../../../../samples/models/Primary_Detector/resnet10.caffemodel
proto-file=../../../../samples/models/Primary_Detector/resnet10.prototxt
model-engine-file=/opt/nvidia/deepstream/deepstream-5.1/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_fp16.engine
labelfile-path=../../../../samples/models/Primary_Detector/labels.txt
int8-calib-file=../../../../samples/models/Primary_Detector/cal_trt.bin
force-implicit-batch-dim=1
batch-size=1
network-mode=1
num-detected-classes=4
interval=0
gie-unique-id=1
output-blob-names=conv2d_bbox;conv2d_cov/Sigmoid
#scaling-filter=0
#scaling-compute-hw=0

[class-attrs-all]
pre-cluster-threshold=0.2
eps=0.2
group-threshold=1

dstest1_sgie1_config.txt

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
onnx-file=../../../../samples/models/Helmet/ssd-mobilenet.onnx
model-engine-file=../../../../samples/models/Helmet/ssd-mobilenet.onnx_b1_gpu0_fp16.engine
labelfile-path=../../../../samples/models/Helmet/labels.txt
int8-calib-file=../../../../samples/models/Primary_Detector/cal_trt.bin
batch-size=1
network-mode=1
num-detected-classes=3
interval=0
gie-unique-id=1
#output-blob-names=conv2d_bbox;conv2d_cov/Sigmoid
#scaling-filter=0
#scaling-compute-hw=0
is-classifier=1
#output-blob-names=predictions/Softmax
classifier-async-mode=1
classifier-threshold=0.9
parse-bbox-func-name=NvDsInferParseCustomTfSSD
custom-lib-path=/home/netcoz/libnvds_infercustomparser.so

[class-attrs-all]
pre-cluster-threshold=0.2
eps=0.2
group-threshold=1

dstest1_tracker_config.txt same as deepstream-test-2

Sorry if this is hard to follow. Thanks

can you print name of all layer in your model sgie1 ?
output-blob-names must be name of output layer

This is my layers.txt :

BACKGROUND
Helmet
Human head

I wasnt sure how to use output-blob-names before. Should I use it like below?

output-blob-names=background;helmet;humanhead

ERROR: [TRT]: INVALID_ARGUMENT: Cannot find binding of given name: BACKGROUND
0:00:05.562895790  8979   0x7f68003ec0 WARN                 nvinfer gstnvinfer.cpp:616:gst_nvinfer_logger:<secondary1-nvinference-engine> NvDsInferContext[UID 2]: Warning from NvDsInferContextImpl::checkBackendParams() <nvdsinfer_context_impl.cpp:1670> [UID = 2]: Could not find output layer 'BACKGROUND' in engine
ERROR: [TRT]: INVALID_ARGUMENT: Cannot find binding of given name: HELMET
0:00:05.562952196  8979   0x7f68003ec0 WARN                 nvinfer gstnvinfer.cpp:616:gst_nvinfer_logger:<secondary1-nvinference-engine> NvDsInferContext[UID 2]: Warning from NvDsInferContextImpl::checkBackendParams() <nvdsinfer_context_impl.cpp:1670> [UID = 2]: Could not find output layer 'HELMET' in engine

And according this I don’t need output-blob-names with onnx

# Following properties are mandatory when engine files are not specified:
#   int8-calib-file(Only in INT8)
#   Caffemodel mandatory properties: model-file, proto-file, output-blob-names
#   UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names
#   ONNX: onnx-file

Thanks

try with: output-blob-names=boxes;scores

Using winsys: x11 
0:00:04.045411752 11596   0x7f68003ec0 INFO                 nvinfer gstnvinfer.cpp:619:gst_nvinfer_logger:<secondary1-nvinference-engine> NvDsInferContext[UID 2]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1702> [UID = 2]: deserialized trt engine from :/opt/nvidia/deepstream/deepstream-5.1/samples/models/Helmet/ssd-mobilenet.onnx_b1_gpu0_fp16.engine
INFO: [Implicit Engine Info]: layers num: 3
0   INPUT  kFLOAT input_0         3x300x300       
1   OUTPUT kFLOAT scores          3000x3          
2   OUTPUT kFLOAT boxes           3000x4          

0:00:04.045571495 11596   0x7f68003ec0 INFO                 nvinfer gstnvinfer.cpp:619:gst_nvinfer_logger:<secondary1-nvinference-engine> NvDsInferContext[UID 2]: Info from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1806> [UID = 2]: Use deserialized engine model: /opt/nvidia/deepstream/deepstream-5.1/samples/models/Helmet/ssd-mobilenet.onnx_b1_gpu0_fp16.engine
0:00:04.072324236 11596   0x7f68003ec0 INFO                 nvinfer gstnvinfer_impl.cpp:313:notifyLoadModelStatus:<secondary1-nvinference-engine> [UID 2]: Load new model:dstest1_sgie1_config.txt sucessfully
gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream/lib/libnvds_mot_klt.so
gstnvtracker: Optional NvMOT_RemoveStreams not implemented
gstnvtracker: Batch processing is OFF
gstnvtracker: Past frame output is OFF
0:00:04.415457247 11596   0x7f68003ec0 INFO                 nvinfer gstnvinfer.cpp:619:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1702> [UID = 1]: deserialized trt engine from :/opt/nvidia/deepstream/deepstream-5.1/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_fp16.engine
INFO: [Implicit Engine Info]: layers num: 3
0   INPUT  kFLOAT input_1         3x368x640       
1   OUTPUT kFLOAT conv2d_bbox     16x23x40        
2   OUTPUT kFLOAT conv2d_cov/Sigmoid 4x23x40         

0:00:04.415658555 11596   0x7f68003ec0 INFO                 nvinfer gstnvinfer.cpp:619:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1806> [UID = 1]: Use deserialized engine model: /opt/nvidia/deepstream/deepstream-5.1/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_fp16.engine
0:00:04.420811243 11596   0x7f68003ec0 INFO                 nvinfer gstnvinfer_impl.cpp:313:notifyLoadModelStatus:<primary-inference> [UID 1]: Load new model:dstest1_pgie_config.txt sucessfully

There is no error but I can’t see secondary detections.

Thanks

can you upload all config file ?

################################################################################
# Copyright (c) 2018-2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################

# Following properties are mandatory when engine files are not specified:
#   int8-calib-file(Only in INT8)
#   Caffemodel mandatory properties: model-file, proto-file, output-blob-names
#   UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names
#   ONNX: onnx-file
#
# Mandatory properties for detectors:
#   num-detected-classes
#
# Optional properties for detectors:
#   cluster-mode(Default=Group Rectangles), interval(Primary mode only, Default=0)
#   custom-lib-path,
#   parse-bbox-func-name
#
# Mandatory properties for classifiers:
#   classifier-threshold, is-classifier
#
# Optional properties for classifiers:
#   classifier-async-mode(Secondary mode only, Default=false)
#
# Optional properties in secondary mode:
#   operate-on-gie-id(Default=0), operate-on-class-ids(Defaults to all classes),
#   input-object-min-width, input-object-min-height, input-object-max-width,
#   input-object-max-height
#
# Following properties are always recommended:
#   batch-size(Default=1)
#
# Other optional properties:
#   net-scale-factor(Default=1), network-mode(Default=0 i.e FP32),
#   model-color-format(Default=0 i.e. RGB) model-engine-file, labelfile-path,
#   mean-file, gie-unique-id(Default=0), offsets, process-mode (Default=1 i.e. primary),
#   custom-lib-path, network-mode(Default=0 i.e FP32)
#
# The values in the config file are overridden by values set through GObject
# properties.

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
onnx-file=../../../../samples/models/Helmet/ssd-mobilenet.onnx
model-engine-file=../../../../samples/models/Helmet/ssd-mobilenet.onnx_b1_gpu0_fp16.engine
labelfile-path=../../../../samples/models/Helmet/labels.txt
#int8-calib-file=../../../../samples/models/Primary_Detector/cal_trt.bin
batch-size=1
network-mode=1
num-detected-classes=3
interval=0
gie-unique-id=1
#output-blob-names=conv2d_bbox;conv2d_cov/Sigmoid
output-blob-names=boxes;scores
#scaling-filter=0
#scaling-compute-hw=0
gie-unique-id=2
operate-on-gie-id=1
operate-on-class-ids=2
is-classifier=1
classifier-async-mode=0
classifier-threshold=0.1
parse-bbox-func-name=NvDsInferParseCustomTfSSD
custom-lib-path=/home/netcoz/CustomLibPath/libnvds_infercustomparser.so

[class-attrs-all]
pre-cluster-threshold=0.2
eps=0.2
group-threshold=1

pgie, sgie, and config source

dstest1_pgie_config.txt (3.4 KB)
dstest1_sgie1_config.txt (3.4 KB)

What you mean by config source ?

you run 2 model pgie and sgie on what deepstream test app ?

deepstream-test1-usbcam

deepstream_test_1_usb_2.py (15.2 KB)

this test app just run with one model, try with deepstream-test2

I know but I modified it just like test2
Primary detector and tracker works.

try add: process-mode=2 to sgie config

Adding process-mode=2 causes Segmentation fault on first detection

can you show the error

Segmentation fault

Nothing more

i think you need debug

parse-bbox-func-name=NvDsInferParseCustomTfSSD
custom-lib-path=/home/netcoz/CustomLibPath/libnvds_infercustomparser.so

follow you output

in sgie config i see: network-mode=1 but use parse-bbox-func-name=NvDsInferParseCustomTfSSD. must be parse-bbox-func-name=NvDsInferClassiferParseCustomSoftmax

Note: NvDsInferClassiferParseCustomSoftmax work for resnet so you need custom this function to work with onnx

1 Like