I can’t run deepstream-lidar-inference-app on jetson nano. It will report an error, but I can reason when I run the image_client that comes with tritonserver.
tritonserver runs on the local jetson orin
My environment is:
deepstream-app version 6.2.0
DeepStreamSDK 6.2.0
CUDA Driver Version: 11.4
CUDA Runtime Version: 11.4
TensorRT Version: 8.4
cuDNN Version: 8.4
libNVWarp360 Version: 2.0.1d3
The model generated by build_engine.sh in deepstream-lidar-ference-app that I use
The error reported is:
I0922 01:46:54.894148 13666 pinned_memory_manager.cc:240] Pinned memory pool is created at ‘0x204c80000’ with size 268435456
I0922 01:46:54.894532 13666 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0922 01:46:54.921109 13666 model_lifecycle.cc:459] loading: pointpillars:1
I0922 01:46:55.000913 13666 tensorrt.cc:64] TRITONBACKEND_Initialize: tensorrt
I0922 01:46:55.000978 13666 tensorrt.cc:74] Triton TRITONBACKEND API version: 1.11
I0922 01:46:55.001000 13666 tensorrt.cc:80] ‘tensorrt’ TRITONBACKEND API version: 1.11
I0922 01:46:55.001011 13666 tensorrt.cc:104] backend configuration:
{“cmdline”:{“auto-complete-config”:“true”,“min-compute-capability”:“5.300000”,“backend-directory”:“/opt/tritonserver/backends”,“default-max-batch-size”:“4”}}
I0922 01:46:55.002111 13666 tensorrt.cc:211] TRITONBACKEND_ModelInitialize: pointpillars (version 1)
I0922 01:46:55.712098 13666 logging.cc:49] [MemUsageChange] Init CUDA: CPU +213, GPU +0, now: CPU 242, GPU 5795 (MiB)
I0922 01:46:55.918412 13666 logging.cc:49] Loaded engine size: 5 MiB
W0922 01:46:55.923472 13666 logging.cc:46] Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
I0922 01:46:57.800932 13666 logging.cc:49] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +534, GPU +822, now: CPU 808, GPU 6652 (MiB)
I0922 01:46:58.062737 13666 logging.cc:49] [MemUsageChange] Init cuDNN: CPU +86, GPU +143, now: CPU 894, GPU 6795 (MiB)
I0922 01:46:58.067462 13666 logging.cc:49] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +5, now: CPU 0, GPU 5 (MiB)
W0922 01:46:58.067570 13666 model_state.cc:520] The specified dimensions in model config for pointpillars hints that batching is unavailable
I0922 01:46:58.070762 13666 tensorrt.cc:260] TRITONBACKEND_ModelInstanceInitialize: pointpillars_0 (GPU device 0)
I0922 01:46:58.073305 13666 logging.cc:49] [MemUsageChange] Init CUDA: CPU +0, GPU +0, now: CPU 881, GPU 6795 (MiB)
I0922 01:46:58.076809 13666 logging.cc:49] Loaded engine size: 5 MiB
W0922 01:46:58.077075 13666 logging.cc:46] Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
I0922 01:46:58.084250 13666 logging.cc:49] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +0, now: CPU 894, GPU 6795 (MiB)
I0922 01:46:58.085541 13666 logging.cc:49] [MemUsageChange] Init cuDNN: CPU +0, GPU +0, now: CPU 894, GPU 6795 (MiB)
I0922 01:46:58.088111 13666 logging.cc:49] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +5, now: CPU 0, GPU 5 (MiB)
I0922 01:46:58.091079 13666 logging.cc:49] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +1, GPU +4, now: CPU 883, GPU 6799 (MiB)
I0922 01:46:58.092560 13666 logging.cc:49] [MemUsageChange] Init cuDNN: CPU +0, GPU +0, now: CPU 883, GPU 6799 (MiB)
I0922 01:46:58.436340 13666 logging.cc:49] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +403, now: CPU 0, GPU 408 (MiB)
Segmentation fault (core dumped)