Hi, I’m using detection neural network with configuration of tiny yolo v2 and darknet’s framework.
I’m using the same code on both my computer, and the embbeded jetson TX2.
my computer’s GPU qualities:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 158
Model name: Intel(R) Core™ i7-7740X CPU @ 4.30GHz
Stepping: 9
CPU MHz: 800.741
CPU max MHz: 4500.0000
CPU min MHz: 800.0000
BogoMIPS: 8592.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti retpoline intel_pt rsb_ctxsw spec_ctrl tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp
I’ve installed on both devicess cuda 9.0 and cuDNN 7.0.5.
On my host computer I got image detection within 0.0045 seconds (over 200 frames per second), and on the jetson TX2 I got image detection within 0.04 seconds, X10 slower (25 frames per second).
What makes the big difference? I know the host computer has 2 cores more then the jetson, and it has a bigger bandwidth of memory, but I don’t belive this is the main reason. so please, how can I get similar results on the jetson?
thank you all.