Please provide the following information when requesting support.
• Hardware (dGPU: NVIDIA RTX 3050 6GB)
• Network Type (LPRNet)
• TLT Version:
Configuration of the TAO Toolkit Instance
task_group:
model:
dockers:
nvidia/tao/tao-toolkit:
5.5.0-pyt:
docker_registry: nvcr.io
tasks:
1. action_recognition
2. centerpose
3. visual_changenet
4. deformable_detr
5. dino
6. grounding_dino
7. mask_grounding_dino
8. mask2former
9. mal
10. ml_recog
11. ocdnet
12. ocrnet
13. optical_inspection
14. pointpillars
15. pose_classification
16. re_identification
17. classification_pyt
18. segformer
19. bevfusion
5.0.0-tf1.15.5:
docker_registry: nvcr.io
tasks:
1. bpnet
2. classification_tf1
3. converter
4. detectnet_v2
5. dssd
6. efficientdet_tf1
7. faster_rcnn
8. fpenet
9. lprnet
10. mask_rcnn
11. multitask_classification
12. retinanet
13. ssd
14. unet
15. yolo_v3
16. yolo_v4
17. yolo_v4_tiny
5.5.0-tf2:
docker_registry: nvcr.io
tasks:
1. classification_tf2
2. efficientdet_tf2
dataset:
dockers:
nvidia/tao/tao-toolkit:
5.5.0-data-services:
docker_registry: nvcr.io
tasks:
1. augmentation
2. auto_label
3. annotations
4. analytics
deploy:
dockers:
nvidia/tao/tao-toolkit:
5.5.0-deploy:
docker_registry: nvcr.io
tasks:
1. visual_changenet
2. centerpose
3. classification_pyt
4. classification_tf1
5. classification_tf2
6. deformable_detr
7. detectnet_v2
8. dino
9. dssd
10. efficientdet_tf1
11. efficientdet_tf2
12. faster_rcnn
13. grounding_dino
14. mask_grounding_dino
15. mask2former
16. lprnet
17. mask_rcnn
18. ml_recog
19. multitask_classification
20. ocdnet
21. ocrnet
22. optical_inspection
23. retinanet
24. segformer
25. ssd
26. trtexec
27. unet
28. yolo_v3
29. yolo_v4
30. yolo_v4_tiny
format_version: 3.0
toolkit_version: 5.5.0
published_date: 08/26/2024
• Training spec file:
random_seed: 42
lpr_config {
hidden_units: 512
max_label_length: 12
arch: "baseline"
nlayers: 18 #setting nlayers to be 10 to use baseline10 model
}
training_config {
batch_size_per_gpu: 16
num_epochs: 250
learning_rate {
soft_start_annealing_schedule {
min_learning_rate: 1e-6
max_learning_rate: 1e-5
soft_start: 0.001
annealing: 0.5
}
}
regularizer {
type: L2
weight: 5e-4
}
}
eval_config {
validation_period_during_training: 50
batch_size: 1
}
augmentation_config {
output_width: 120
output_height: 48
output_channel: 3
max_rotate_degree: 5
rotate_prob: 0.5
gaussian_kernel_size: 5
gaussian_kernel_size: 7
gaussian_kernel_size: 15
blur_prob: 0.5
reverse_color_prob: 0.5
keep_original_prob: 0.3
}
dataset_config {
data_sources: {
label_directory_path: "/data/tlt-experiments/data/ocr_dataset/train/label"
image_directory_path: "/data/tlt-experiments/data/ocr_dataset/train/image"
}
characters_list_file: "/data/tlt-experiments/lprnet/specs/vn_lp_characters.txt"
validation_data_sources: {
label_directory_path: "/data/tlt-experiments/data/ocr_dataset/val/label"
image_directory_path: "/data/tlt-experiments/data/ocr_dataset/val/image"
}
}
- vn_lp_characters.txt:
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
I
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
Y
Z
-
.
I have a dataset which have both single line and double line of license plate:
-
Double line LP image:
The label file content of above image is: 77B024.71 -
Single line LP image:

The label file content of above image is: 79A-085.99
If I use above dataset and train from the US pretrain model, the accuracy is low (~66%). Is there anyway that I can achieve a higher accuracy, so I can use that model in my GStreamer pipeline for inference with Triton Inference Server.
My previous post in Deepstream forum: https://forums.developer.nvidia.com/t/custom-processor-on-2-line-license-plate-recognition/335273?u=hungtv
