Please provide the following information when requesting support.
• Hardware (T4/V100/Xavier/Nano/etc): NVIDIA GeForce RTX 3070
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc) : Image Classification PyT
• TLT Version (Please run “tao info --verbose” and share “docker_tag” here): 5.5.0-pyt
Configuration of the TAO Toolkit Instance
task_group:
model:
dockers:
nvidia/tao/tao-toolkit:
5.5.0-pyt:
docker_registry: nvcr.io
tasks:
1. action_recognition
2. centerpose
3. visual_changenet
4. deformable_detr
5. dino
6. grounding_dino
7. mask_grounding_dino
8. mask2former
9. mal
10. ml_recog
11. ocdnet
12. ocrnet
13. optical_inspection
14. pointpillars
15. pose_classification
16. re_identification
17. classification_pyt
18. segformer
19. bevfusion
5.0.0-tf1.15.5:
docker_registry: nvcr.io
tasks:
1. bpnet
2. classification_tf1
3. converter
4. detectnet_v2
5. dssd
6. efficientdet_tf1
7. faster_rcnn
8. fpenet
9. lprnet
10. mask_rcnn
11. multitask_classification
12. retinanet
13. ssd
14. unet
15. yolo_v3
16. yolo_v4
17. yolo_v4_tiny
5.5.0-tf2:
docker_registry: nvcr.io
tasks:
1. classification_tf2
2. efficientdet_tf2
dataset:
dockers:
nvidia/tao/tao-toolkit:
5.5.0-data-services:
docker_registry: nvcr.io
tasks:
1. augmentation
2. auto_label
3. annotations
4. analytics
deploy:
dockers:
nvidia/tao/tao-toolkit:
5.5.0-deploy:
docker_registry: nvcr.io
tasks:
1. visual_changenet
2. centerpose
3. classification_pyt
4. classification_tf1
5. classification_tf2
6. deformable_detr
7. detectnet_v2
8. dino
9. dssd
10. efficientdet_tf1
11. efficientdet_tf2
12. faster_rcnn
13. grounding_dino
14. mask_grounding_dino
15. mask2former
16. lprnet
17. mask_rcnn
18. ml_recog
19. multitask_classification
20. ocdnet
21. ocrnet
22. optical_inspection
23. retinanet
24. segformer
25. ssd
26. trtexec
27. unet
28. yolo_v3
29. yolo_v4
30. yolo_v4_tiny
format_version: 3.0
toolkit_version: 5.5.0
published_date: 08/26/2024
• Training spec file(If have, please share here):
spec.txt (2.1 KB)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)
docker run -it --rm --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
-v $PWD:/ws \
nvcr.io/nvidia/tao/tao-toolkit:5.5.0-pyt \
classification_pyt train \
-e /ws/spec.yaml \
results_dir=/ws/results \
train.gpu_ids=[0] \
train.num_gpus=1
without-ann-file.log (10.9 KB)
with-ann-file.log (3.2 KB)
Hello, I am learning how to fine tune a model via TAO Toolkit. I have followed the instructions as directed in the data annotation format docs and the MMPretrain dataset structure docs.
Both documentation indicate an ann_file
field is required if the dataset structure isn’t organized into subfolders, where the class names matches the names of the directories. i.e. If the dataset structure matches the following:
train/
├── folder_1
│ ├── xxx.png
│ ├── xxy.png
│ └── ...
├── 123.png
├── nsdf3.png
└── ...
an ann_file
matching the following is required
folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 1
nsdf3.png 2
The dataset.data.train.ann_file
field isn’t recognized in the TAO schema, but is recognized for the val/test
fields