Net pruning on the FCN-8 net for TensorRT

Hey guys, I have been using the FCN-Alexnet, and it has been working well. I am trying to switch to using the FCN-8 net, but am having some trouble determining what needs to be changed in deploy.prototxt to get the net running in TensorRT. Here is what the net looks like:

input: "data"
input_shape {
  dim: 1
  dim: 3
  dim: 360
  dim: 640
}
layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 100
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}
layer {
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2_1"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu2_1"
  type: "ReLU"
  bottom: "conv2_1"
  top: "conv2_1"
}
layer {
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2_1"
  top: "conv2_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu2_2"
  type: "ReLU"
  bottom: "conv2_2"
  top: "conv2_2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2_2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3_1"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu3_1"
  type: "ReLU"
  bottom: "conv3_1"
  top: "conv3_1"
}
layer {
  name: "conv3_2"
  type: "Convolution"
  bottom: "conv3_1"
  top: "conv3_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu3_2"
  type: "ReLU"
  bottom: "conv3_2"
  top: "conv3_2"
}
layer {
  name: "conv3_3"
  type: "Convolution"
  bottom: "conv3_2"
  top: "conv3_3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu3_3"
  type: "ReLU"
  bottom: "conv3_3"
  top: "conv3_3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3_3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4_1"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu4_1"
  type: "ReLU"
  bottom: "conv4_1"
  top: "conv4_1"
}
layer {
  name: "conv4_2"
  type: "Convolution"
  bottom: "conv4_1"
  top: "conv4_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu4_2"
  type: "ReLU"
  bottom: "conv4_2"
  top: "conv4_2"
}
layer {
  name: "conv4_3"
  type: "Convolution"
  bottom: "conv4_2"
  top: "conv4_3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu4_3"
  type: "ReLU"
  bottom: "conv4_3"
  top: "conv4_3"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4_3"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv5_1"
  type: "Convolution"
  bottom: "pool4"
  top: "conv5_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu5_1"
  type: "ReLU"
  bottom: "conv5_1"
  top: "conv5_1"
}
layer {
  name: "conv5_2"
  type: "Convolution"
  bottom: "conv5_1"
  top: "conv5_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu5_2"
  type: "ReLU"
  bottom: "conv5_2"
  top: "conv5_2"
}
layer {
  name: "conv5_3"
  type: "Convolution"
  bottom: "conv5_2"
  top: "conv5_3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu5_3"
  type: "ReLU"
  bottom: "conv5_3"
  top: "conv5_3"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5_3"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "Convolution"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 4096
    pad: 0
    kernel_size: 7
    stride: 1
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "fc7"
  type: "Convolution"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 4096
    pad: 0
    kernel_size: 1
    stride: 1
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "score_fr"
  type: "Convolution"
  bottom: "fc7"
  top: "score_fr"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 21
    pad: 0
    kernel_size: 1
  }
}
layer {
  name: "upscore2"
  type: "Deconvolution"
  bottom: "score_fr"
  top: "upscore2"
  param {
    lr_mult: 0.0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 4
    stride: 2
  }
}
layer {
  name: "score_pool4"
  type: "Convolution"
  bottom: "pool4"
  top: "score_pool4"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 21
    pad: 0
    kernel_size: 1
  }
}
layer {
  name: "score_pool4c"
  type: "Crop"
  bottom: "score_pool4"
  bottom: "upscore2"
  top: "score_pool4c"
  crop_param {
    axis: 2
    offset: 5
  }
}
layer {
  name: "fuse_pool4"
  type: "Eltwise"
  bottom: "upscore2"
  bottom: "score_pool4c"
  top: "fuse_pool4"
  eltwise_param {
    operation: SUM
  }
}
layer {
  name: "upscore_pool4"
  type: "Deconvolution"
  bottom: "fuse_pool4"
  top: "upscore_pool4"
  param {
    lr_mult: 0.0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 4
    stride: 2
  }
}
layer {
  name: "score_pool3"
  type: "Convolution"
  bottom: "pool3"
  top: "score_pool3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 21
    pad: 0
    kernel_size: 1
  }
}
layer {
  name: "score_pool3c"
  type: "Crop"
  bottom: "score_pool3"
  bottom: "upscore_pool4"
  top: "score_pool3c"
  crop_param {
    axis: 2
    offset: 9
  }
}
layer {
  name: "fuse_pool3"
  type: "Eltwise"
  bottom: "upscore_pool4"
  bottom: "score_pool3c"
  top: "fuse_pool3"
  eltwise_param {
    operation: SUM
  }
}
layer {
  name: "upscore8"
  type: "Deconvolution"
  bottom: "fuse_pool3"
  top: "upscore8"
  param {
    lr_mult: 0.0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 16
    stride: 8
  }
}
layer {
  name: "score"
  type: "Crop"
  bottom: "upscore8"
  bottom: "data"
  top: "score"
  crop_param {
    axis: 2
    offset: 31
  }
}
layer {
  name: "score_12classes"
  type: "Convolution"
  bottom: "score"
  top: "score_12classes"
  convolution_param {
    num_output: 12
    pad: 0
    kernel_size: 1
  }
}

It doesn’t look like I can crop it in the same way as the FCN-Alexnet, as the layers aren’t the same.
Can someone show me what needs to be trimmed on this net and explain it a little so I can figure it out for myself next time?

Thanks a LOT!

Hi,

Here is a tutorial for running segNet on TensorRT:
https://github.com/dusty-nv/jetson-inference#image-segmentation-with-segnet

Thanks.

Thanks for the reply!
I have already followed that tutorial and successfully gotten the FCN-Alexnet working on the TX2. Now I just need to know what layers to crop off the FCN-8 net to get it working.

Hi,

Do you find this information?
https://github.com/dusty-nv/jetson-inference#fcn-alexnet-patches-for-tensorrt

[i]-----
There exist a couple non-essential layers included in the original FCN-Alexnet which aren’t supported in TensorRT and should be deleted from the deploy.prototxt included in the snapshot.

At the end of deploy.prototxt, delete the deconv and crop layers:
-----[/i]

Here is also a relevent topic for your reference:
https://devtalk.nvidia.com/default/topic/1021784/unable-to-get-segmentation-to-work-with-jetson-tx2/?offset=16

Thanks.

Hello!

I have found and used that information. However, those are instructions for pruning the FCN-Alexnet. I am looking to prune the FCN-8 net (They are slightly different) There seem to be no instructions on the web for this.

Yes.

We don’t have a tutorial specific for FCN-8.
It’s recommended to refine the jetson_inference sample for FCN-8 with the implemented drawing and post-process functions.

Thanks.

Are there any FCN-8 examples found in jetson_inference? I can only find examples for the FCN-Alexnet.

Looking at the Caffe net above, could you tell me which layers I need to prune on it?

Hi,

Tutorial directly for FCN-8 is not available.

It’s recommended to write your FCN-8 use-case from jetson_inference:
https://github.com/dusty-nv/jetson-inference/blob/master/segNet.cpp

In segNet sample, model output a score-map for different classes.
You can also set the score-map as the output of TensorRT and remove the following unnecessary layers.

Thanks.

Ok! So that means I need to have this layer be the last one in the NN?

layer {
  name: "upscore2"
  type: "Deconvolution"
  bottom: "score_fr"
  top: "upscore2"
  param {
    lr_mult: 0.0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 4
    stride: 2
  }
}

Thank you for your patience!

Suppose YES. Welcome to share future update/issue with us.
Thanks.

Hi, @ssullivan. Did you run the fcn-8 net for tensorrt sucessfully? Could you give me more details, such as the prototxt?

Yeah I got it running. Do you still need info?