nvprof seems to make inference slower, no tensor cores being used

Hi,

I’ve being using Nvidia apex to test automatic mixed-precision training. The goal is to test the speed up of our Unet implementation in pytorch in our Nvidia Jetson AGX Xavier.

After training the inference with apex.amp goes from 65ms to 35ms for the pure python version of apex, which seems really good (almost 2x speedup).

The problem comes when I want to verify the usage of tensor cores in our Jetson as in https://devtalk.nvidia.com/default/topic/1047165/jetson-agx-xavier/how-to-confirm-whether-tensor-core-is-working-or-not-/ using nvprof.

I dont know why but the inference falls down to the original 65ms when using nvprof to profile our inference test. Also the profiling results doesnt show any tensor cores being used:

Invocations                               Metric Name                           Metric Description         Min         Max         Avg
Device "Xavier (0)"
    Kernel: compute_gemm_pointers(float2**, float2 const *, int, float2 const *, int, float2 const *, int, int)
          4           tensor_precision_fu_utilization   Tensor-Precision Function Unit Utilization    Idle (0)    Idle (0)    Idle (0)
          4                 tensor_int_fu_utilization         Tensor-Int Function Unit Utilization    Idle (0)    Idle (0)    Idle (0)

Right now Im measuring the inference time with torch.cuda.synchronize(), should I stop doing it while profiling?
Is it possible that nvprof is influencing the results?
Is there another way to check for tensor cores usage on our GPU?

Thanks in advance

Hi,

Would you mind to give PyProf a try first?
https://github.com/NVIDIA/apex/tree/master/apex/pyprof

PyProf is a recommended profiling tool for PyTorch and apex.

import torch.cuda.profiler as profiler
from apex import pyprof
pyprof.nvtx.init()

Thanks.

Hi, so I did whats in the pyprof readme.md but I cant get pyprof to work with nvprof.

But it seems that nvprof alone is working (but I lost the benefits of being able to know the pytorch operations that pyprof provides). It seems like a parser error in the output file so maybe is a bug in pyprof.

1. When I use pyprof inside my code (it doesn’t work)

# Any of this
sudo /usr/local/cuda/bin/nvprof -f -o my_output_file.sql --profile-from-start off -- python3 my_main.py
sudo /usr/local/cuda/bin/nvprof -f -o my_output_file.sql python3 my_main.py
# When trying to parse
python3 -m apex.pyprof.parse all_measurements_pyprof.sql > all_measurements_pyprof.dict
]
Traceback (most recent call last):
  File "/usr/lib/python3.6/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/usr/lib/python3.6/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/home/nvidia/.local/lib/python3.6/site-packages/apex/pyprof/parse/__main__.py", line 10, in <module>
    main()
  File "/home/nvidia/.local/lib/python3.6/site-packages/apex/pyprof/parse/parse.py", line 63, in main
    info = nvvp.getMarkerInfo(k.objId, k.rStartTime, k.rEndTime)
  File "/home/nvidia/.local/lib/python3.6/site-packages/apex/pyprof/parse/nvvp.py", line 277, in getMarkerInfo
    altSeqMarkers.sort(key=seqcompare)
  File "/home/nvidia/.local/lib/python3.6/site-packages/apex/pyprof/parse/nvvp.py", line 169, in seqcompare
    assert (", seq = " in elem)
AssertionError

The output without a file is

==8594== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   14.52%  1.26781s      1761  719.94us  298.92us  1.5383ms  volta_fp16_s884cudnn_fp16_256x64_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1
                   13.81%  1.20576s       479  2.5172ms  109.35us  83.370ms  volta_gcgemm_32x32_nt
                   10.80%  942.43ms        12  78.536ms  30.946us  443.27ms  void transpose_readWrite_alignment_kernel<float2, float2, int=1, bool=0, int=6, int=4, int=4>(cublasTransposeParams<float2>, float2 const *, float2*, float2 const *)
                    9.09%  793.36ms      5536  143.31us  2.6240us  1.1046ms  void nchwToNhwcKernel<__half, __half, float, bool=1, bool=0>(int, int, int, int, __half const *, __half*, float, float)
                    5.86%  511.51ms        24  21.313ms  7.3242ms  59.667ms  volta_sgemm_128x128_nn
                    5.01%  437.53ms      2875  152.19us  18.209us  386.16us  void op_generic_tensor_kernel<int=2, __half, float, __half, int=256, cudnnGenericOp_t=0, cudnnNanPropagation_t=0, cudnnDimOrder_t=0, int=0>(cudnnTensorStruct, __half*, cudnnTensorStruct, __half const *, cudnnTensorStruct, __half const *, float, float, float, float, dimArray, reducedDivisorArray)
                    3.54%  309.40ms         3  103.13ms  102.48ms  104.10ms  volta_cgemm_32x64_tn
                    3.49%  304.24ms       377  807.00us  611.48us  1.1826ms  volta_fp16_s884cudnn_fp16_256x128_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1
                    3.46%  302.41ms       544  555.91us  360.62us  763.49us  void fermiCgemm_v3_kernel<bool=1, bool=0, bool=0, bool=0, int=5, int=5, int=3, int=8, int=8>(int, int, int, float2 const *, int, float2 const *, int, float2*, int, int, int, float2 const *, float2 const *, float2, float2, int)
                    2.89%  252.10ms      2250  112.04us  16.096us  289.58us  void kernelPointwiseApply2<ThresholdUpdateOutput<at::Half>, at::Half, at::Half, unsigned int, int=1, int=1>(OffsetInfo<ThresholdUpdateOutput<at::Half>, at::Half, unsigned int>, OffsetInfo<at::Half, at::Half, int=1>, at::Half, at::Half)
                    2.43%  212.27ms        18  11.793ms  26.273us  64.494ms  void fft2d_r2c_32x32<__half, bool=0, unsigned int=1, bool=1>(float2*, __half const *, int, int, int, int, int, int, int, int, int, cudnn::reduced_divisor, bool, int2, int, int)
                    2.32%  202.55ms       500  405.09us  115.40us  957.00us  void kernelPointwiseApply2<CopyOp<float, float>, float, float, unsigned int, int=-1, int=1>(OffsetInfo<float, float, float>, OffsetInfo<CopyOp<float, float>, float, unsigned int>, float, float)
                    2.31%  201.26ms       500  402.52us  259.44us  580.57us  void nearest_neighbor_4d_kernel<float, float>(int, THCDeviceTensor<float, int=4, int, DefaultPtrTraits>, THCDeviceTensor<float, int=4, int, DefaultPtrTraits>)
                    2.07%  180.63ms       252  716.78us  668.89us  784.10us  volta_fp16_s884cudnn_fp16_256x64_ldg8_relu_f2f_exp_interior_nhwc2nchw_tn_v1
                    1.54%  134.34ms       671  200.21us  1.4720us  786.34us  void kernelPointwiseApply2<CopyOp<at::Half, float>, at::Half, float, unsigned int, int=1, int=1>(OffsetInfo<float, at::Half, float>, OffsetInfo<CopyOp<at::Half, float>, at::Half, unsigned int>, at::Half, at::Half)
                    1.23%  107.49ms       500  214.98us  38.594us  574.10us  void kernelPointwiseApply1<TensorFillOp<float>, float, unsigned int, int=1>(OffsetInfo<TensorFillOp<float>, float, unsigned int>, float, float)
                    1.23%  107.36ms       500  214.73us  60.834us  480.53us  void CatArrayBatchedCopy<at::Half, unsigned int, int=4>(at::Half*, CatArrInputTensor<at::Half, unsigned int>*, OutputTensorSizeStride<unsigned int, unsigned int=4>, int, unsigned int)
                    1.23%  107.33ms        28  3.8331ms  235.21us  18.183ms  void cudnn::winograd_nonfused::winogradForwardData4x4<float, __half>(cudnn::winograd_nonfused::WinogradDataParams<float, __half>)
                    0.91%  79.518ms        20  3.9759ms  1.9273ms  7.7055ms  void cudnn::detail::implicit_convolve_sgemm<__half, __half, int=512, int=6, int=8, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>(int, int, int, __half const *, int, __half*, cudnn::detail::implicit_convolve_sgemm<__half, __half, int=512, int=6, int=8, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>*, kernel_conv_params, int, float, float, int, __half, __half, int, int)
                    0.81%  71.067ms       126  564.02us  560.02us  578.07us  volta_fp16_s884cudnn_fp16_256x128_ldg8_relu_f2f_exp_interior_nhwc2nchw_tn_v1
                    0.76%  66.093ms        28  2.3605ms  344.43us  6.0229ms  void cudnn::winograd_nonfused::winogradForwardOutput4x4<float, __half>(cudnn::winograd_nonfused::WinogradOutputParams<float, __half>)
                    0.73%  63.637ms       126  505.06us  500.73us  515.57us  volta_fp16_s884cudnn_fp16_128x128_ldg8_relu_f2f_exp_interior_nhwc2nchw_tn_v1
                    0.67%  58.897ms        13  4.5305ms  1.8310ms  8.0788ms  void cudnn::winograd::winograd3x3Kernel<__half, float, int=1, int=4, int=8, bool=0>(cudnn::maxwell::winograd::KernelParams)
                    0.67%  58.668ms       500  117.34us  32.578us  252.27us  void MaxPoolForward<at::Half, float>(int, at::Half const *, int, int, int, int, int, int, int, int, int, int, int, int, int, int, at::Half*, long*)
                    0.56%  48.904ms       766  63.843us     256ns  4.7354ms  [CUDA memcpy HtoD]
                    0.52%  45.616ms         4  11.404ms  385.30us  43.667ms  void DSE::regular_fft_pad<int=0, int=1, int=256, int=16, int=16, int=1, __half, float, float2>(float2*, __half*, int, int3, __half*, int, __half*, __half*, int, int, int, int, int, bool)
                    0.52%  44.998ms       126  357.12us  348.72us  368.27us  volta_fp16_s884cudnn_fp16_128x128_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1
                    0.48%  42.185ms         4  10.546ms  7.0822ms  14.003ms  volta_sgemm_128x64_nn
                    0.48%  41.850ms        10  4.1850ms  331.21us  10.334ms  void cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=5, int=5, int=3, int=3, int=3, int=1, bool=1, bool=0, bool=1>(int, int, int, __half const *, int, __half*, cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=5, int=5, int=3, int=3, int=3, int=1, bool=1, bool=0, bool=1>*, kernel_conv_params, int, float, float, int, __half, __half, int, int)
                    0.47%  41.211ms        10  4.1211ms  1.7906ms  7.2531ms  volta_fp16_scudnn_fp16_128x64_relu_small_nn_v1
                    0.46%  40.404ms         2  20.202ms  219.02us  40.185ms  void DSE::regular_fft_pad<int=0, int=1, int=128, int=16, int=32, int=1, __half, float, float2>(float2*, __half*, int, int3, __half*, int, __half*, __half*, int, int, int, int, int, bool)
                    0.46%  40.324ms         4  10.081ms  308.78us  38.627ms  void DSE::vector_fft<int=0, int=1, int=256, int=16, int=16, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.44%  38.366ms        10  3.8366ms  1.8658ms  7.4346ms  void cudnn::detail::explicit_convolve_sgemm<__half, int, int=512, int=6, int=8, int=3, int=3, int=5, int=0, bool=1>(int, int, int, __half const *, int, __half const , int, cudnn::detail::explicit_convolve_sgemm<__half, int, int=512, int=6, int=8, int=3, int=3, int=5, int=0, bool=1>*, kernel_conv_params, int, int, float, float, int, __half const *, __half const *)
                    0.44%  38.252ms         2  19.126ms  157.96us  38.094ms  void DSE::vector_fft<int=0, int=1, int=128, int=8, int=8, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.43%  37.554ms       625  60.086us  17.697us  185.58us  void kernelPointwiseApply2<CopyOp<float, at::Half>, float, at::Half, unsigned int, int=1, int=1>(OffsetInfo<at::Half, float, at::Half>, OffsetInfo<CopyOp<float, at::Half>, float, unsigned int>, float, float)
                    0.42%  36.334ms         8  4.5418ms  2.1470ms  8.1404ms  void cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=6, int=7, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>(int, int, int, __half const *, int, __half*, cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=6, int=7, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>*, kernel_conv_params, int, float, float, int, __half, __half, int, int)
                    0.39%  34.189ms         2  17.095ms  106.95us  34.082ms  void fft2d_r2c_64x64<__half>(float2*, __half const *, int, int, int, int, int, int, int, int)
                    0.36%  31.830ms         4  7.9576ms  52.162us  31.622ms  void fft2d_r2c_32x32<__half, bool=0, unsigned int=1, bool=0>(float2*, __half const *, int, int, int, int, int, int, int, int, int, cudnn::reduced_divisor, bool, int2, int, int)
                    0.28%  24.520ms       126  194.61us  190.31us  200.97us  volta_s884cudnn_fp16_256x64_ldg8_relu_exp_interior_nhwc_tn_v1
                    0.23%  19.715ms         5  3.9429ms  295.31us  9.6794ms  void cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=5, int=5, int=3, int=3, int=3, int=0, bool=1>(int, int, int, __half const *, int, __half const , int, cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=5, int=5, int=3, int=3, int=3, int=0, bool=1>*, kernel_conv_params, int, int, float, float, int, __half const *, __half const *)
                    0.19%  16.622ms         4  4.1554ms  1.9669ms  7.4844ms  void cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=6, int=7, int=3, int=3, int=5, int=0, bool=1>(int, int, int, __half const *, int, __half const , int, cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=6, int=7, int=3, int=3, int=5, int=0, bool=1>*, kernel_conv_params, int, int, float, float, int, __half const *, __half const *)
                    0.19%  16.463ms       171  96.273us     768ns  4.1981ms  [CUDA memcpy DtoH]
                    0.14%  12.202ms         3  4.0674ms  1.7587ms  6.9460ms  volta_fp16_scudnn_fp16_128x128_relu_small_nn_v1
                    0.13%  11.769ms       476  24.725us  5.7920us  141.48us  void fft2d_r2c_32x32<__half, bool=0, unsigned int=0, bool=0>(float2*, __half const *, int, int, int, int, int, int, int, int, int, cudnn::reduced_divisor, bool, int2, int, int)
                    0.13%  10.956ms       252  43.476us  4.1600us  84.100us  void nchwToNhwcKernel<__half, __half, float, bool=1, bool=1>(int, int, int, int, __half const *, __half*, float, float)
                    0.12%  10.468ms      2913  3.5930us  1.8240us  9.8240us  cudnn::gemm::computeOffsetsKernel(cudnn::gemm::ComputeOffsetsParams)
                    0.11%  9.8755ms       126  78.376us  77.667us  79.459us  void nhwcToNchwKernel<float, __half, float, bool=1, bool=1>(int, int, int, int, float const *, __half*, float, float)
                    0.11%  9.6742ms        19  509.17us  59.234us  2.1930ms  void im2col4d_kernel<__half, int>(im2col4d_params, cudnnConvolutionStruct, cudnnTensor4dStruct, __half const *, __half*, int)
                    0.11%  9.4702ms       476  19.895us  10.208us  129.64us  void fft2d_c2r_32x32<__half, bool=0, bool=0, unsigned int=0, bool=0, bool=0>(__half*, float2 const *, int, int, int, int, int, int, int, int, int, float, float, cudnn::reduced_divisor, bool, __half*, __half*, int2, int, int)
                    0.11%  9.4329ms         3  3.1443ms  3.0958ms  3.1996ms  volta_fp16_scudnn_fp16_128x64_relu_interior_nn_v1
                    0.10%  9.0751ms        28  324.11us  4.6080us  1.8901ms  void cudnn::winograd_nonfused::winogradForwardFilter4x4<float, __half>(cudnn::winograd_nonfused::WinogradFilterParams<float, __half>)
                    0.05%  4.5987ms         2  2.2993ms  903.46us  3.6952ms  void flip_filter<__half, __half>(__half*, __half const *, int, int, int, int)
                    0.04%  3.7668ms         1  3.7668ms  3.7668ms  3.7668ms  void fermiPlusCgemmLDS128_batched<bool=1, bool=0, bool=0, bool=0, int=4, int=4, int=4, int=3, int=3, bool=1, bool=0>(float2* const *, float2* const *, float2* const *, float2*, float2 const *, float2 const *, int, int, int, int, int, int, __int64, __int64, __int64, float2 const *, float2 const *, float2, float2, int)
                    0.04%  3.1032ms         1  3.1032ms  3.1032ms  3.1032ms  volta_fp16_scudnn_fp16_128x128_relu_interior_nn_v1
                    0.03%  2.8060ms        14  200.43us  7.9680us  1.0719ms  void cudnn::winograd::generateWinogradTilesKernel<int=0, __half, float>(cudnn::winograd::GenerateWinogradTilesParams<__half, float>)
                    0.01%  1.0265ms         2  513.27us  44.226us  982.31us  void DSE::regular_fft_clip<int=1, int=2, int=256, int=16, int=16, int=1, __half, float, float2>(__half*, float2*, int, int3, float2*, int, float2*, float2*, int, int, int, int, int, float, float, bool, int, __half, __half)
                    0.01%  722.59us         1  722.59us  722.59us  722.59us  void fft1d_r2c_256<__half, float, float2, bool=0, bool=0>(float2*, __half const *, int3, int3, int2, int2)
                    0.01%  647.52us         1  647.52us  647.52us  647.52us  void cudnn::winograd::winograd3x3Kernel<__half, float, int=1, int=4, int=8, bool=1>(cudnn::maxwell::winograd::KernelParams)
                    0.01%  593.05us         2  296.52us  22.401us  570.65us  void DSE::vector_fft<int=1, int=2, int=256, int=16, int=16, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.01%  494.26us         4  123.57us  15.489us  211.88us  compute_gemm_pointers(float2**, float2 const *, int, float2 const *, int, float2 const *, int, int)
                    0.01%  494.04us         1  494.04us  494.04us  494.04us  void DSE::regular_fft_clip<int=1, int=2, int=128, int=16, int=32, int=1, __half, float, float2>(__half*, float2*, int, int3, float2*, int, float2*, float2*, int, int, int, int, int, float, float, bool, int, __half, __half)
                    0.00%  319.82us         1  319.82us  319.82us  319.82us  void DSE::vector_fft<int=1, int=2, int=128, int=8, int=8, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.00%  294.89us         1  294.89us  294.89us  294.89us  volta_fp16_scudnn_fp16_128x32_relu_small_nn_v1
                    0.00%  269.23us       756     356ns     256ns  1.3760us  [CUDA memset]
                    0.00%  265.52us         1  265.52us  265.52us  265.52us  volta_fp16_scudnn_fp16_128x32_relu_interior_nn_v1
                    0.00%  249.61us         3  83.203us  80.228us  86.499us  void fft2d_c2r_32x32<__half, bool=0, bool=0, unsigned int=1, bool=0, bool=0>(__half*, float2 const *, int, int, int, int, int, int, int, int, int, float, float, cudnn::reduced_divisor, bool, __half*, __half*, int2, int, int)
                    0.00%  175.11us         1  175.11us  175.11us  175.11us  void fft2d_c2r_64x64<__half, bool=0>(__half*, float2*, int, int, int, int, int, int, int, int, int, int, float, float, int, __half*, __half*)
                    0.00%  41.409us         1  41.409us  41.409us  41.409us  void fft1d_c2r_256<float2, float, __half, bool=0, bool=1, bool=0, bool=0>(__half*, float2 const *, int3, int3, int2, int, float, float, __half*, __half*)
                    0.00%  29.793us         1  29.793us  29.793us  29.793us  void fft1d_r2c_256<__half, float, float2, bool=1, bool=0>(float2*, __half const *, int3, int3, int2, int2)
      API calls:   46.73%  8.51666s        98  86.905ms  13.281us  4.79676s  cudaMalloc
                   21.89%  3.98890s       161  24.776ms  308.59us  632.52ms  cudaEventSynchronize
                   17.35%  3.16134s         8  395.17ms  28.897us  3.16113s  cudaStreamCreateWithFlags
                    5.66%  1.03126s     22923  44.988us  20.257us  1.6283ms  cudaLaunchKernel
                    3.21%  584.21ms        56  10.432ms  3.0080us  89.673ms  cudaFree
                    1.51%  274.56ms    132316  2.0750us  1.3760us  1.0325ms  cudaGetDevice
                    0.97%  176.84ms       890  198.70us  29.089us  5.2887ms  cudaMemcpyAsync
                    0.89%  162.95ms         1  162.95ms  162.95ms  162.95ms  cudaDeviceSynchronize
                    0.53%  97.009ms     37969  2.5540us  1.4400us  1.0500ms  cudaSetDevice
                    0.45%  81.743ms       756  108.13us  19.425us  248.62us  cudaMemsetAsync
                    0.32%  58.447ms      3915  14.928us  2.2080us  118.69us  cudaEventRecord
                    0.11%  20.652ms        47  439.41us  37.986us  4.9120ms  cudaMemcpy
                    0.10%  18.342ms     30262     606ns     224ns  57.603us  cudaGetLastError
                    0.05%  9.3394ms       390  23.947us  6.5600us  149.29us  cudaStreamSynchronize
                    0.05%  9.2902ms      1164  7.9810us  6.2080us  59.970us  cudaBindTexture
                    0.04%  7.3940ms       499  14.817us  10.177us  51.970us  cudaEventQuery
                    0.04%  6.8859ms       566  12.165us  2.2400us  62.946us  cudaEventCreateWithFlags
                    0.02%  4.5489ms       818  5.5600us  2.2720us  37.697us  cudaStreamWaitEvent
                    0.02%  4.4700ms       556  8.0390us  2.0480us  58.722us  cudaEventDestroy
                    0.02%  3.6358ms      1164  3.1230us  2.0800us  35.713us  cudaUnbindTexture
                    0.01%  1.9415ms       161  12.059us  4.2880us  86.851us  cudaEventElapsedTime
                    0.00%  867.68us         2  433.84us  201.96us  665.72us  cudaHostAlloc
                    0.00%  693.24us        19  36.486us  30.914us  55.939us  cudaMemGetInfo
                    0.00%  551.25us       282  1.9540us     768ns  48.546us  cuDeviceGetAttribute
                    0.00%  233.99us       243     962ns     256ns  23.713us  cudaGetDeviceCount
                    0.00%  214.02us         4  53.506us  28.545us  126.09us  cudaStreamCreateWithPriority
                    0.00%  197.35us        19  10.387us  8.8650us  12.225us  cudaEventCreate
                    0.00%  141.38us        30  4.7120us  2.8160us  28.609us  cudaFuncSetAttribute
                    0.00%  61.026us         1  61.026us  61.026us  61.026us  cudaGetDeviceProperties
                    0.00%  45.217us        27  1.6740us  1.5040us  3.6480us  cudaDeviceGetAttribute
                    0.00%  41.185us         5  8.2370us  1.3440us  30.369us  cuDeviceGetCount
                    0.00%  38.754us         1  38.754us  38.754us  38.754us  cudaProfilerStart
                    0.00%  36.034us        76     474ns     224ns  1.2160us  cudaCreateChannelDesc
                    0.00%  35.393us         3  11.797us  7.4560us  20.033us  cuDeviceTotalMem
                    0.00%  15.168us         2  7.5840us  3.6160us  11.552us  cuDriverGetVersion
                    0.00%  9.0560us         4  2.2640us  1.5680us  4.0000us  cuDeviceGet
                    0.00%  8.0320us         3  2.6770us  1.6320us  3.5200us  cuDeviceGetUuid
                    0.00%  8.0320us         2  4.0160us  2.7840us  5.2480us  cuInit
                    0.00%  6.1770us         3  2.0590us  1.8240us  2.3680us  cuDeviceGetName
                    0.00%  5.7920us         1  5.7920us  5.7920us  5.7920us  cudaHostGetDevicePointer
                    0.00%  4.7360us         1  4.7360us  4.7360us  4.7360us  cudaDeviceGetStreamPriorityRange

2. When I dont use pyprof inside my code.

The output is pretty much the same that as when using pyprof as can be seen:

==16381== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   15.86%  1.51712s      2111  718.67us  298.13us  1.4808ms  volta_fp16_s884cudnn_fp16_256x64_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1
                   12.59%  1.20421s       479  2.5140ms  110.28us  83.299ms  volta_gcgemm_32x32_nt
                    9.92%  948.72ms      6636  142.97us  2.7200us  1.1057ms  void nchwToNhwcKernel<__half, __half, float, bool=1, bool=0>(int, int, int, int, __half const *, __half*, float, float)
                    9.85%  942.28ms        12  78.523ms  30.786us  442.70ms  void transpose_readWrite_alignment_kernel<float2, float2, int=1, bool=0, int=6, int=4, int=4>(cublasTransposeParams<float2>, float2 const *, float2*, float2 const *)
                    5.50%  526.44ms      3450  152.59us  18.081us  381.27us  void op_generic_tensor_kernel<int=2, __half, float, __half, int=256, cudnnGenericOp_t=0, cudnnNanPropagation_t=0, cudnnDimOrder_t=0, int=0>(cudnnTensorStruct, __half*, cudnnTensorStruct, __half const *, cudnnTensorStruct, __half const *, float, float, float, float, dimArray, reducedDivisorArray)
                    5.35%  511.69ms        24  21.320ms  7.3095ms  59.391ms  volta_sgemm_128x128_nn
                    3.82%  365.56ms       452  808.77us  613.98us  1.1781ms  volta_fp16_s884cudnn_fp16_256x128_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1
                    3.23%  309.42ms         3  103.14ms  102.48ms  104.10ms  volta_cgemm_32x64_tn
                    3.14%  300.47ms      2700  111.29us  15.937us  291.47us  void kernelPointwiseApply2<ThresholdUpdateOutput<at::Half>, at::Half, at::Half, unsigned int, int=1, int=1>(OffsetInfo<ThresholdUpdateOutput<at::Half>, at::Half, unsigned int>, OffsetInfo<at::Half, at::Half, int=1>, at::Half, at::Half)
                    3.07%  293.37ms       544  539.29us  361.71us  783.84us  void fermiCgemm_v3_kernel<bool=1, bool=0, bool=0, bool=0, int=5, int=5, int=3, int=8, int=8>(int, int, int, float2 const *, int, float2 const *, int, float2*, int, int, int, float2 const *, float2 const *, float2, float2, int)
                    2.55%  244.14ms       600  406.91us  262.22us  573.91us  void nearest_neighbor_4d_kernel<float, float>(int, THCDeviceTensor<float, int=4, int, DefaultPtrTraits>, THCDeviceTensor<float, int=4, int, DefaultPtrTraits>)
                    2.55%  244.02ms       600  406.70us  115.53us  958.16us  void kernelPointwiseApply2<CopyOp<float, float>, float, float, unsigned int, int=-1, int=1>(OffsetInfo<float, float, float>, OffsetInfo<CopyOp<float, float>, float, unsigned int>, float, float)
                    2.26%  216.27ms       302  716.12us  662.17us  776.71us  volta_fp16_s884cudnn_fp16_256x64_ldg8_relu_f2f_exp_interior_nhwc2nchw_tn_v1
                    2.22%  212.78ms        18  11.821ms  26.562us  64.670ms  void fft2d_r2c_32x32<__half, bool=0, unsigned int=1, bool=1>(float2*, __half const *, int, int, int, int, int, int, int, int, int, cudnn::reduced_divisor, bool, int2, int, int)
                    1.67%  159.76ms       796  200.70us  1.4720us  803.27us  void kernelPointwiseApply2<CopyOp<at::Half, float>, at::Half, float, unsigned int, int=1, int=1>(OffsetInfo<float, at::Half, float>, OffsetInfo<CopyOp<at::Half, float>, at::Half, unsigned int>, at::Half, at::Half)
                    1.35%  129.51ms       600  215.85us  60.163us  480.63us  void CatArrayBatchedCopy<at::Half, unsigned int, int=4>(at::Half*, CatArrInputTensor<at::Half, unsigned int>*, OutputTensorSizeStride<unsigned int, unsigned int=4>, int, unsigned int)
                    1.23%  117.89ms       600  196.49us  40.354us  549.27us  void kernelPointwiseApply1<TensorFillOp<float>, float, unsigned int, int=1>(OffsetInfo<TensorFillOp<float>, float, unsigned int>, float, float)
                    1.12%  107.59ms        28  3.8425ms  236.20us  18.196ms  void cudnn::winograd_nonfused::winogradForwardData4x4<float, __half>(cudnn::winograd_nonfused::WinogradDataParams<float, __half>)
                    0.89%  85.471ms       151  566.03us  561.15us  576.76us  volta_fp16_s884cudnn_fp16_256x128_ldg8_relu_f2f_exp_interior_nhwc2nchw_tn_v1
                    0.83%  79.490ms        20  3.9745ms  1.9291ms  7.6921ms  void cudnn::detail::implicit_convolve_sgemm<__half, __half, int=512, int=6, int=8, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>(int, int, int, __half const *, int, __half*, cudnn::detail::implicit_convolve_sgemm<__half, __half, int=512, int=6, int=8, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>*, kernel_conv_params, int, float, float, int, __half, __half, int, int)
                    0.80%  76.094ms       151  503.94us  499.25us  517.59us  volta_fp16_s884cudnn_fp16_128x128_ldg8_relu_f2f_exp_interior_nhwc2nchw_tn_v1
                    0.74%  70.377ms       600  117.30us  32.865us  254.44us  void MaxPoolForward<at::Half, float>(int, at::Half const *, int, int, int, int, int, int, int, int, int, int, int, int, int, int, at::Half*, long*)
                    0.69%  65.989ms        28  2.3568ms  347.86us  6.0013ms  void cudnn::winograd_nonfused::winogradForwardOutput4x4<float, __half>(cudnn::winograd_nonfused::WinogradOutputParams<float, __half>)
                    0.62%  59.202ms        13  4.5540ms  1.7954ms  8.2444ms  void cudnn::winograd::winograd3x3Kernel<__half, float, int=1, int=4, int=8, bool=0>(cudnn::maxwell::winograd::KernelParams)
                    0.56%  53.614ms       151  355.06us  347.57us  362.22us  volta_fp16_s884cudnn_fp16_128x128_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1
                    0.52%  50.098ms       891  56.226us     288ns  5.3730ms  [CUDA memcpy HtoD]
                    0.47%  45.327ms       750  60.435us  17.216us  169.80us  void kernelPointwiseApply2<CopyOp<float, at::Half>, float, at::Half, unsigned int, int=1, int=1>(OffsetInfo<at::Half, float, at::Half>, OffsetInfo<CopyOp<float, at::Half>, float, unsigned int>, float, float)
                    0.47%  45.320ms         4  11.330ms  384.88us  43.379ms  void DSE::regular_fft_pad<int=0, int=1, int=256, int=16, int=16, int=1, __half, float, float2>(float2*, __half*, int, int3, __half*, int, __half*, __half*, int, int, int, int, int, bool)
                    0.44%  42.249ms         4  10.562ms  7.0908ms  14.012ms  volta_sgemm_128x64_nn
                    0.44%  41.993ms        10  4.1993ms  333.39us  10.387ms  void cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=5, int=5, int=3, int=3, int=3, int=1, bool=1, bool=0, bool=1>(int, int, int, __half const *, int, __half*, cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=5, int=5, int=3, int=3, int=3, int=1, bool=1, bool=0, bool=1>*, kernel_conv_params, int, float, float, int, __half, __half, int, int)
                    0.43%  41.194ms        10  4.1194ms  1.7911ms  7.2555ms  volta_fp16_scudnn_fp16_128x64_relu_small_nn_v1
                    0.42%  40.298ms         2  20.149ms  216.65us  40.082ms  void DSE::regular_fft_pad<int=0, int=1, int=128, int=16, int=32, int=1, __half, float, float2>(float2*, __half*, int, int3, __half*, int, __half*, __half*, int, int, int, int, int, bool)
                    0.42%  39.841ms         4  9.9603ms  302.86us  38.143ms  void DSE::vector_fft<int=0, int=1, int=256, int=16, int=16, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.40%  38.357ms        10  3.8357ms  1.8650ms  7.4328ms  void cudnn::detail::explicit_convolve_sgemm<__half, int, int=512, int=6, int=8, int=3, int=3, int=5, int=0, bool=1>(int, int, int, __half const *, int, __half const , int, cudnn::detail::explicit_convolve_sgemm<__half, int, int=512, int=6, int=8, int=3, int=3, int=5, int=0, bool=1>*, kernel_conv_params, int, int, float, float, int, __half const *, __half const *)
                    0.40%  37.997ms         2  18.999ms  157.32us  37.840ms  void DSE::vector_fft<int=0, int=1, int=128, int=8, int=8, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.38%  36.555ms         8  4.5693ms  2.1408ms  8.1353ms  void cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=6, int=7, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>(int, int, int, __half const *, int, __half*, cudnn::detail::implicit_convolve_sgemm<__half, __half, int=1024, int=6, int=7, int=3, int=3, int=5, int=1, bool=1, bool=0, bool=1>*, kernel_conv_params, int, float, float, int, __half, __half, int, int)
                    0.36%  34.120ms         2  17.060ms  109.09us  34.011ms  void fft2d_r2c_64x64<__half>(float2*, __half const *, int, int, int, int, int, int, int, int)
                    0.33%  31.785ms         4  7.9463ms  50.531us  31.574ms  void fft2d_r2c_32x32<__half, bool=0, unsigned int=1, bool=0>(float2*, __half const *, int, int, int, int, int, int, int, int, int, cudnn::reduced_divisor, bool, int2, int, int)
                    0.31%  29.443ms       151  194.99us  192.46us  198.44us  volta_s884cudnn_fp16_256x64_ldg8_relu_exp_interior_nhwc_tn_v1
                    0.21%  19.897ms         5  3.9795ms  296.21us  9.7205ms  void cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=5, int=5, int=3, int=3, int=3, int=0, bool=1>(int, int, int, __half const *, int, __half const , int, cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=5, int=5, int=3, int=3, int=3, int=0, bool=1>*, kernel_conv_params, int, int, float, float, int, __half const *, __half const *)
                    0.17%  16.686ms         4  4.1716ms  2.0288ms  7.4851ms  void cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=6, int=7, int=3, int=3, int=5, int=0, bool=1>(int, int, int, __half const *, int, __half const , int, cudnn::detail::explicit_convolve_sgemm<__half, int, int=1024, int=6, int=7, int=3, int=3, int=5, int=0, bool=1>*, kernel_conv_params, int, int, float, float, int, __half const *, __half const *)
                    0.17%  16.375ms       196  83.547us     736ns  4.3144ms  [CUDA memcpy DtoH]
                    0.14%  13.206ms       302  43.728us  4.2250us  84.516us  void nchwToNhwcKernel<__half, __half, float, bool=1, bool=1>(int, int, int, int, __half const *, __half*, float, float)
                    0.13%  12.384ms      3488  3.5500us  1.8240us  10.304us  cudnn::gemm::computeOffsetsKernel(cudnn::gemm::ComputeOffsetsParams)
                    0.13%  12.200ms         3  4.0667ms  1.7532ms  6.9506ms  volta_fp16_scudnn_fp16_128x128_relu_small_nn_v1
                    0.13%  12.036ms       151  79.711us  78.883us  80.804us  void nhwcToNchwKernel<float, __half, float, bool=1, bool=1>(int, int, int, int, float const *, __half*, float, float)
                    0.12%  11.723ms       476  24.629us  5.6960us  123.56us  void fft2d_r2c_32x32<__half, bool=0, unsigned int=0, bool=0>(float2*, __half const *, int, int, int, int, int, int, int, int, int, cudnn::reduced_divisor, bool, int2, int, int)
                    0.10%  9.7015ms        19  510.60us  58.499us  2.2062ms  void im2col4d_kernel<__half, int>(im2col4d_params, cudnnConvolutionStruct, cudnnTensor4dStruct, __half const *, __half*, int)
                    0.10%  9.5072ms       476  19.973us  10.209us  106.60us  void fft2d_c2r_32x32<__half, bool=0, bool=0, unsigned int=0, bool=0, bool=0>(__half*, float2 const *, int, int, int, int, int, int, int, int, int, float, float, cudnn::reduced_divisor, bool, __half*, __half*, int2, int, int)
                    0.10%  9.4330ms         3  3.1443ms  3.0944ms  3.2000ms  volta_fp16_scudnn_fp16_128x64_relu_interior_nn_v1
                    0.09%  8.8468ms        28  315.96us  4.5760us  1.7903ms  void cudnn::winograd_nonfused::winogradForwardFilter4x4<float, __half>(cudnn::winograd_nonfused::WinogradFilterParams<float, __half>)
                    0.05%  4.5737ms         2  2.2869ms  904.62us  3.6691ms  void flip_filter<__half, __half>(__half*, __half const *, int, int, int, int)
                    0.04%  3.7634ms         1  3.7634ms  3.7634ms  3.7634ms  void fermiPlusCgemmLDS128_batched<bool=1, bool=0, bool=0, bool=0, int=4, int=4, int=4, int=3, int=3, bool=1, bool=0>(float2* const *, float2* const *, float2* const *, float2*, float2 const *, float2 const *, int, int, int, int, int, int, __int64, __int64, __int64, float2 const *, float2 const *, float2, float2, int)
                    0.03%  3.1034ms         1  3.1034ms  3.1034ms  3.1034ms  volta_fp16_scudnn_fp16_128x128_relu_interior_nn_v1
                    0.03%  2.7891ms        14  199.22us  7.2650us  1.0794ms  void cudnn::winograd::generateWinogradTilesKernel<int=0, __half, float>(cudnn::winograd::GenerateWinogradTilesParams<__half, float>)
                    0.01%  1.0252ms         2  512.62us  44.034us  981.20us  void DSE::regular_fft_clip<int=1, int=2, int=256, int=16, int=16, int=1, __half, float, float2>(__half*, float2*, int, int3, float2*, int, float2*, float2*, int, int, int, int, int, float, float, bool, int, __half, __half)
                    0.01%  724.35us         1  724.35us  724.35us  724.35us  void fft1d_r2c_256<__half, float, float2, bool=0, bool=0>(float2*, __half const *, int3, int3, int2, int2)
                    0.01%  650.75us         1  650.75us  650.75us  650.75us  void cudnn::winograd::winograd3x3Kernel<__half, float, int=1, int=4, int=8, bool=1>(cudnn::maxwell::winograd::KernelParams)
                    0.01%  645.31us         2  322.65us  23.073us  622.24us  void DSE::vector_fft<int=1, int=2, int=256, int=16, int=16, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.01%  493.43us         4  123.36us  15.681us  211.59us  compute_gemm_pointers(float2**, float2 const *, int, float2 const *, int, float2 const *, int, int)
                    0.01%  489.33us         1  489.33us  489.33us  489.33us  void DSE::regular_fft_clip<int=1, int=2, int=128, int=16, int=32, int=1, __half, float, float2>(__half*, float2*, int, int3, float2*, int, float2*, float2*, int, int, int, int, int, float, float, bool, int, __half, __half)
                    0.00%  363.09us       906     400ns     256ns  1.4400us  [CUDA memset]
                    0.00%  296.62us         1  296.62us  296.62us  296.62us  volta_fp16_scudnn_fp16_128x32_relu_small_nn_v1
                    0.00%  291.18us         1  291.18us  291.18us  291.18us  void DSE::vector_fft<int=1, int=2, int=128, int=8, int=8, int=1, __half, float, float2>(float2*, float2, int, int3, float2*)
                    0.00%  263.02us         1  263.02us  263.02us  263.02us  volta_fp16_scudnn_fp16_128x32_relu_interior_nn_v1
                    0.00%  251.98us         3  83.993us  79.172us  87.268us  void fft2d_c2r_32x32<__half, bool=0, bool=0, unsigned int=1, bool=0, bool=0>(__half*, float2 const *, int, int, int, int, int, int, int, int, int, float, float, cudnn::reduced_divisor, bool, __half*, __half*, int2, int, int)
                    0.00%  180.39us         1  180.39us  180.39us  180.39us  void fft2d_c2r_64x64<__half, bool=0>(__half*, float2*, int, int, int, int, int, int, int, int, int, int, float, float, int, __half*, __half*)
                    0.00%  42.401us         1  42.401us  42.401us  42.401us  void fft1d_c2r_256<float2, float, __half, bool=0, bool=1, bool=0, bool=0>(__half*, float2 const *, int3, int3, int2, int, float, float, __half*, __half*)
                    0.00%  29.377us         1  29.377us  29.377us  29.377us  void fft1d_r2c_256<__half, float, float2, bool=1, bool=0>(float2*, __half const *, int3, int3, int2, int2)
      API calls:   43.29%  8.73867s        97  90.089ms  14.657us  4.91466s  cudaMalloc
                   19.74%  3.98450s       161  24.748ms  282.54us  631.21ms  cudaEventSynchronize
                   15.78%  3.18612s         8  398.27ms  30.882us  3.18585s  cudaStreamCreateWithFlags
                    9.94%  2.00560s       300  6.6853ms  26.049us  15.733ms  cudaDeviceSynchronize
                    4.14%  834.88ms     27023  30.895us  20.257us  1.5463ms  cudaLaunchKernel
                    3.00%  606.42ms        55  11.026ms  3.2320us  92.019ms  cudaFree
                    1.53%  308.71ms    158516  1.9470us  1.3760us  939.72us  cudaGetDevice
                    0.92%  185.80ms      1040  178.65us  21.825us  6.0409ms  cudaMemcpyAsync
                    0.49%  98.127ms     45544  2.1540us  1.5040us  938.53us  cudaSetDevice
                    0.32%  64.440ms       906  71.125us  20.385us  944.10us  cudaMemsetAsync
                    0.25%  51.422ms        47  1.0941ms  21.281us  31.602ms  cudaMemcpy
                    0.22%  44.631ms      4590  9.7230us  2.4000us  203.82us  cudaEventRecord
                    0.10%  20.989ms     35812     586ns     224ns  870.88us  cudaGetLastError
                    0.05%  10.620ms       440  24.137us  5.5360us  111.37us  cudaStreamSynchronize
                    0.05%  9.8539ms      1293  7.6200us  2.1120us  87.075us  cudaEventQuery
                    0.05%  9.8371ms      1164  8.4510us  6.3040us  128.10us  cudaBindTexture
                    0.03%  5.8189ms       666  8.7370us  2.3040us  64.579us  cudaEventCreateWithFlags
                    0.02%  4.9241ms       655  7.5170us  2.0160us  814.69us  cudaEventDestroy
                    0.02%  4.9055ms       818  5.9960us  2.3040us  87.363us  cudaStreamWaitEvent
                    0.02%  3.5482ms      1164  3.0480us  2.0800us  28.033us  cudaUnbindTexture
                    0.01%  1.9065ms       161  11.841us  4.5440us  71.843us  cudaEventElapsedTime
                    0.00%  935.33us         3  311.78us  114.34us  576.92us  cudaHostAlloc
                    0.00%  703.68us        19  37.035us  27.169us  70.915us  cudaMemGetInfo
                    0.00%  570.30us       282  2.0220us     800ns  54.114us  cuDeviceGetAttribute
                    0.00%  265.48us        19  13.972us  8.5130us  45.729us  cudaEventCreate
                    0.00%  215.14us       243     885ns     256ns  26.657us  cudaGetDeviceCount
                    0.00%  185.26us        30  6.1750us  3.3280us  36.065us  cudaFuncSetAttribute
                    0.00%  152.55us         4  38.137us  32.033us  54.498us  cudaStreamCreateWithPriority
                    0.00%  67.874us        27  2.5130us  1.5040us  23.681us  cudaDeviceGetAttribute
                    0.00%  41.986us         3  13.995us  11.041us  18.016us  cuDeviceTotalMem
                    0.00%  37.090us        76     488ns     256ns  1.5040us  cudaCreateChannelDesc
                    0.00%  35.489us         1  35.489us  35.489us  35.489us  cudaGetDeviceProperties
                    0.00%  12.609us         5  2.5210us  1.1200us  4.6090us  cuDeviceGetCount
                    0.00%  11.424us         3  3.8080us  2.7840us  4.6720us  cuDeviceGetUuid
                    0.00%  7.1040us         3  2.3680us  1.7920us  3.0400us  cuDeviceGetName
                    0.00%  6.9770us         4  1.7440us     960ns  2.6560us  cuDeviceGet
                    0.00%  6.9120us         1  6.9120us  6.9120us  6.9120us  cudaHostGetDevicePointer
                    0.00%  5.8240us         1  5.8240us  5.8240us  5.8240us  cudaDeviceGetStreamPriorityRange
                    0.00%  5.7920us         2  2.8960us  2.8800us  2.9120us  cuInit
                    0.00%  5.6960us         2  2.8480us  1.9520us  3.7440us  cuDriverGetVersion

The good thing is that the parser works perfectly and I can use the information.
The bad thing is that I cannot see pytorch operations and the tensor core usage if NA.

python -m apex.pyprof.parse my_output_file.sql > my_output_file.dict
python -m apex.pyprof.prof -w 150 -c kernel,op,sil,tc,flops

Output example:

Kernel                                                                                                          Op              Sil(ns)    TC FLOPs
kernelPointwiseApply2                                                                                                                 3680 na            0
kernelPointwiseApply2                                                                                                                 1504 na            0
kernelPointwiseApply2                                                                                                                17953 na            0
cudnn::detail::implicit_convolve_sgemm                                                                                              410066 na            0
cudnn::detail::implicit_convolve_sgemm                                                                                              395121 na            0
cudnn::gemm::computeOffsetsKernel                                                                                                    10208 na            0
volta_fp16_scudnn_fp16_128x32_relu_small_nn_v1                                                                                      292813 na            0
nchwToNhwcKernel                                                                                                                     83459 na            0
nchwToNhwcKernel                                                                                                                      4544 na            0
cudnn::gemm::computeOffsetsKernel                                                                                                     8160 na            0
volta_fp16_s884cudnn_fp16_256x64_ldg8_relu_f2f_exp_small_nhwc2nchw_tn_v1                                                            407186 na            0
im2col4d_kernel                                                                                                                      59427 na            0
cudnn::detail::explicit_convolve_sgemm                                                                                              428275 na            0
fft2d_r2c_32x32                                                                                                                      29345 na            0
fft2d_r2c_32x32                                                                                                                      19520 na            0
volta_gcgemm_32x32_nt                                                                                                               126342 na            0
fft2d_c2r_32x32                                                                                                                      22593 na            0
fft2d_r2c_32x32                                                                                                                       7424 na            0
volta_gcgemm_32x32_nt                                                                                                               119045 na            0
fft2d_c2r_32x32                                                                                                                      15169 na            0
fft2d_r2c_32x32                                                                                                                      15425 na            0
volta_gcgemm_32x32_nt                                                                                                               118981 na            0
fft2d_c2r_32x32                                                                                                                      15777 na            0
fft2d_r2c_32x32                                                                                                                      11648 na            0
volta_gcgemm_32x32_nt                                                                                                               115205 na            0
fft2d_c2r_32x32                                                                                                                      14624 na            0
fft2d_r2c_32x32                                                                                                                      12097 na            0
volta_gcgemm_32x32_nt                                                                                                               117701 na            0
fft2d_c2r_32x32                                                                                                                      15809 na            0
fft2d_r2c_32x32                                                                                                                      11904 na            0
volta_gcgemm_32x32_nt                                                                                                               121318 na            0
fft2d_c2r_32x32                                                                                                                      15169 na            0
fft2d_r2c_32x32                                                                                                                      11936 na            0
volta_gcgemm_32x32_nt                                                                                                               116229 na            0
fft2d_c2r_32x32                                                                                                                      15809 na            0
fft2d_r2c_32x32                                                                                                                      13185 na            0
  • Why on TC says NA? (1 should be tensor cores being used and I was expecting 0 for not being used)
  • Why all the FLOPS are 0?
  • [b]Is there a way to know what operations would be able to run on tensor cores but are not currently doing it?, Since I see some fp16 kernels I guess those should be run on TC [/b]

I will also post this information on the github on apex/pyprof since it could be an issue with the parser.

Thanks for your help

Hi,

We try nvprof with cuDNN sample and be able to output the profiling data.

Invocations                               Metric Name                        Metric Description         Min         Max         Avg
Device "Xavier (0)"
    Kernel: cask_cudnn::computeOffsetsKernel(cask_cudnn::ComputeOffsetsParams)
          1                 tensor_int_fu_utilization      Tensor-Int Function Unit Utilization    Idle (0)    Idle (0)    Idle (0)
    Kernel: cudnn::gemm::reorderImma8816Filter(cudnn::gemm::ReorderImma8816FilterParams)
          1                 tensor_int_fu_utilization      Tensor-Int Function Unit Utilization    Idle (0)    Idle (0)    Idle (0)
    [b]Kernel: volta_int8_i8816cudnn_int8_128x128_ldg16_relu_interior_nt_v1
          1                 tensor_int_fu_utilization      Tensor-Int Function Unit Utilization    Max (10)    Max (10)    Max (10)[/b]

So this issue may be related to the pyTorch profiling.
Could you share a simple reproducible source for us checking?

Thanks.