import sys
root_dir = ‘/home/jetson/Desktop/face_recogn_code’
sys.path.append(root_dir)
import gi
import configparser
gi.require_version(‘Gst’, ‘1.0’)
from gi.repository import GLib, Gst
import math
import queue
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
from common.FPS import PERF_DATA
import numpy as np
import pyds
import cv2
import os
import csv
from datetime import datetime
import time
import threading
import json
import ctypes
from uuid import uuid4
zero_time = time.time()
cwd = os.getcwd()
frame_count = {}
saved_count = {}
perf_data = None
frame_no = 0
padding = 5
processed_obj_ids = set()
def tiler_sink_pad_buffer_probe(pad, info, u_data):
global attendace_data, prediction, frame_no, obj_id_confidences, previous_obj_id, obj_id, count
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer")
return Gst.PadProbeReturn.OK
# Retrieve batch metadata from the buffer
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
obj_source_id = frame_meta.source_id
l_obj = frame_meta.obj_meta_list
frame_no += 1
# Get frame surface and convert to numpy array
n_frame = pyds.get_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id)
frame = np.array(n_frame, copy=True, order='C')
bgr_frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2BGR)
while l_obj is not None:
try:
obj_meta = pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
# Process objects from the primary model
if obj_meta.unique_component_id == 1:
obj_id, confidence = obj_meta.object_id, obj_meta.confidence
x, y = obj_meta.rect_params.left, obj_meta.rect_params.top
bbox_width, bbox_height = obj_meta.rect_params.width, obj_meta.rect_params.height
x1, y1 = max(int(x - padding), 0), max(int(y - padding), 0)
x2, y2 = int(x + bbox_width + padding), int(y + bbox_height + padding)
if confidence >= 0.4:
# Crop and convert image for saving
cropped_image = bgr_frame[y1:y2, x1:x2]
rgb_image = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)
# Access the secondary model output (landmarks)
l_user_meta = obj_meta.obj_user_meta_list
while l_user_meta is not None:
try:
user_meta = pyds.NvDsUserMeta.cast(l_user_meta.data)
except StopIteration:
break
if user_meta and user_meta.base_meta.meta_type == pyds.NvDsMetaType.NVDSINFER_TENSOR_OUTPUT_META:
try:
tensor_meta = pyds.NvDsInferTensorMeta.cast(user_meta.user_meta_data)
except StopIteration:
break
# Extract embedding from tensor output
for i in range(tensor_meta.num_output_layers):
layer = pyds.get_nvds_LayerInfo(tensor_meta, i)
if layer is not None and layer.buffer:
layer_name = layer.layerName
print("layer_name:",layer_name)
# Get the buffer containing the embeddings
ptr = ctypes.cast(pyds.get_ptr(layer.buffer), ctypes.POINTER(ctypes.c_float))
# Convert the buffer into a NumPy array (embedding vector)
embedding = np.ctypeslib.as_array(ptr, shape=(256,)) # Output dimension is 256
print("Embedding shape:", embedding.shape)
# print("Embedding:", embedding)
try:
l_user_meta = l_user_meta.next
except StopIteration:
break
try:
l_obj = l_obj.next
except StopIteration:
break
try:
l_frame = l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
def cb_newpad(decodebin, decoder_src_pad, data):
print(“In cb_newpad\n”)
caps = decoder_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)
if (gstname.find("video") != -1):
if features.contains("memory:NVMM"):
bin_ghost_pad = source_bin.get_static_pad("src")
if not bin_ghost_pad.set_target(decoder_src_pad):
sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
else:
sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")
def decodebin_child_added(child_proxy, Object, name, user_data):
print(“Decodebin child added:”, name, “\n”)
if name.find(“decodebin”) != -1:
Object.connect(“child-added”, decodebin_child_added, user_data)
if not is_aarch64() and name.find("nvv4l2decoder") != -1:
Object.set_property("cudadec-memtype", 2)
if "source" in name:
source_element = child_proxy.get_by_name("source")
if source_element.find_property('drop-on-latency') != None:
Object.set_property("drop-on-latency", True)
def create_source_bin(index, uri):
# print(“Creating source bin”)
bin_name = “source-bin-%02d” % index
# print(bin_name)
nbin = Gst.Bin.new(bin_name)
if not nbin:
sys.stderr.write(" Unable to create source bin \n")
uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
sys.stderr.write(" Unable to create uri decode bin \n")
uri_decode_bin.set_property("uri", uri)
uri_decode_bin.connect("pad-added", cb_newpad, nbin)
uri_decode_bin.connect("child-added", decodebin_child_added, nbin)
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
if not bin_pad:
sys.stderr.write(" Failed to add ghost pad in source bin \n")
return None
return nbin
def main():
# args = [‘rtsp://admin:Sieora123@10.147.20.64:554/Streaming/Channels/101?transportmode=unicast&profile=Profile_1’]
args = [“file:///nvme0n1/mmtc_detection/perception/deepstream-fewshot-learning-app/friends.mp4”]
global perf_data
perf_data = PERF_DATA(len(args))
number_sources = len(args)
Gst.init(None)
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
if not pipeline:
sys.stderr.write(“Unable to create Pipeline\n”)
is_live = False
INPUT_WIDTH, INPUT_HEIGHT = 1920, 1080
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write("Unable to create NvStreamMux\n")
streammux.set_property('width', INPUT_WIDTH)
streammux.set_property('height', INPUT_HEIGHT)
streammux.set_property('batch-size', number_sources)
streammux.set_property('batched-push-timeout', 400000)
pipeline.add(streammux)
for i in range(number_sources):
print(f"Creating source_bin {i}\n")
uri_name = args[i]
if uri_name.startswith("rtsp://"):
is_live = True
source_bin = create_source_bin(i, uri_name)
if not source_bin:
sys.stderr.write("Unable to create source bin\n")
pipeline.add(source_bin)
sink_pad = streammux.get_request_pad(f"sink_{i}")
src_pad = source_bin.get_static_pad("src")
src_pad.link(sink_pad)
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
sys.stderr.write("Unable to create pgie\n")
pgie.set_property('config-file-path', "model/mtmc_pgie_config.txt")
pipeline.add(pgie)
streammux.link(pgie)
sgie = Gst.ElementFactory.make("nvinfer", "secondary-inference")
if not sgie:
sys.stderr.write("Unable to create sgie\n")
sgie.set_property('config-file-path', "model/mtmc_sgie_config.txt")
pipeline.add(sgie)
pgie.link(sgie)
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "video-converter")
if not nvvidconv:
sys.stderr.write("Unable to create video converter\n")
pipeline.add(nvvidconv)
sgie.link(nvvidconv)
caps = Gst.ElementFactory.make("capsfilter", "filter")
caps.set_property('caps', Gst.Caps.from_string("video/x-raw(memory:NVMM), format=RGBA"))
pipeline.add(caps)
nvvidconv.link(caps)
tiler = Gst.ElementFactory.make("nvmultistreamtiler", "tiler")
if not tiler:
sys.stderr.write("Unable to create tiler\n")
tiler_rows = int(math.sqrt(number_sources))
tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
tiler.set_property("rows", tiler_rows)
tiler.set_property("columns", tiler_columns)
tiler.set_property("width", 1920)
tiler.set_property("height", 1080)
pipeline.add(tiler)
caps.link(tiler)
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write("Unable to create nvosd\n")
pipeline.add(nvosd)
tiler.link(nvosd)
# Creating and adding the tracker
print("Creating nvtracker \n ")
tracker = Gst.ElementFactory.make("nvtracker", "tracker")
if not tracker:
sys.stderr.write("Unable to create tracker\n")
# # Read and set tracker properties from config file
# config = configparser.ConfigParser()
# config.read('model/dsnvanalytics_tracker_config.txt')
# for key in config['tracker']:
# if key == 'tracker-width':
# tracker_width = config.getint('tracker', key)
# tracker.set_property('tracker-width', tracker_width)
# if key == 'tracker-height':
# tracker_height = config.getint('tracker', key)
# tracker.set_property('tracker-height', tracker_height)
# if key == 'gpu-id':
# tracker_gpu_id = config.getint('tracker', key)
# tracker.set_property('gpu-id', tracker_gpu_id)
# if key == 'll-lib-file':
# tracker_ll_lib_file = config.get('tracker', key)
# tracker.set_property('ll-lib-file', tracker_ll_lib_file)
# if key == 'll-config-file':
# tracker_ll_config_file = config.get('tracker', key)
# tracker.set_property('ll-config-file', tracker_ll_config_file)
# if key == 'enable-batch-process':
# tracker_enable_batch_process = config.getint('tracker', key)
# tracker.set_property('enable-batch-process', tracker_enable_batch_process)
# if key == 'enable-past-frame':
# tracker_enable_past_frame = config.getint('tracker', key)
# tracker.set_property('enable-past-frame', tracker_enable_past_frame)
config = configparser.ConfigParser()
config.read('model/dsnvanalytics_tracker_config.txt')
for key in config['tracker']:
if key == 'tracker-width':
tracker_width = config.getint('tracker', key)
tracker.set_property('tracker-width', tracker_width)
if key == 'tracker-height':
tracker_height = config.getint('tracker', key)
tracker.set_property('tracker-height', tracker_height)
if key == 'gpu-id':
tracker_gpu_id = config.getint('tracker', key)
tracker.set_property('gpu-id', tracker_gpu_id)
if key == 'll-lib-file':
tracker_ll_lib_file = config.get('tracker', key)
tracker.set_property('ll-lib-file', tracker_ll_lib_file)
if key == 'll-config-file':
tracker_ll_config_file = config.get('tracker', key)
tracker.set_property('ll-config-file', tracker_ll_config_file)
if key == 'tracking-surface-type':
tracking_surface_type = config.getint('tracker', key)
tracker.set_property('tracking-surface-type', tracking_surface_type)
if key == 'compute-hw':
compute_hw = config.getint('tracker', key)
tracker.set_property('compute-hw', compute_hw)
if key == 'display-tracking-id':
display_tracking_id = config.getint('tracker', key)
tracker.set_property('display-tracking-id', display_tracking_id)
if key == 'tracking-id-reset-mode':
tracking_id_reset_mode = config.getint('tracker', key)
tracker.set_property('tracking-id-reset-mode', tracking_id_reset_mode)
if key == 'input-tensor-meta':
input_tensor_meta = config.getboolean('tracker', key)
tracker.set_property('input-tensor-meta', input_tensor_meta)
if key == 'tensor-meta-gie-id':
tensor_meta_gie_id = config.getint('tracker', key)
tracker.set_property('tensor-meta-gie-id', tensor_meta_gie_id)
if key == 'user-meta-pool-size':
user_meta_pool_size = config.getint('tracker', key)
tracker.set_property('user-meta-pool-size', user_meta_pool_size)
if key == 'sub-batches':
sub_batches = config.getint('tracker', key)
tracker.set_property('sub-batches', sub_batches)
if key=="display-tracking-id":
tracker.set_property('display-tracking-id', True)
pipeline.add(tracker)
nvosd.link(tracker) # Ensure the link between nvosd and tracker
sink = Gst.ElementFactory.make("nv3dsink", "nv3d-sink")
if not sink:
sys.stderr.write("Unable to create sink\n")
sink.set_property("sync", 0)
sink.set_property("qos", 0)
pipeline.add(sink)
tracker.link(sink) # Ensure the link between tracker and sink
if is_live:
print("At least one of the sources is live")
streammux.set_property('live-source', 1)
loop = GLib.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)
tiler_sink_pad = tiler.get_static_pad("sink")
if tiler_sink_pad:
tiler_sink_pad.add_probe(Gst.PadProbeType.BUFFER, tiler_sink_pad_buffer_probe, 0)
print("Starting pipeline \n")
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except Exception as e:
print(f"Exception: {e}")
pipeline.set_state(Gst.State.NULL)
if name == ‘main’:
sys.exit(main())
it could not display tracker id in bounding so how can i resolve it?
#nvidia_inception and #nvidia.ai