I have a regression model that has one layer with output shape 1x11x20
so i use metaTensorData and this function here:
All is working well but i need to get the output vector itself from that one and only layer i have,
So how to retrieve the output_layer.buffer, i want something that replace the ```
pyds.get_detections(output_layer.buffer, 0)
For a suppport, here's the reproduce of the function that mentioned in the link for my model:
>
> import sys
> import pyds
>
>
> def layer_finder(output_layer_info, name):
> """ Return the layer contained in output_layer_info which corresponds
> to the given name.
> """
> for layer in output_layer_info:
> # dataType == 0 <=> dataType == FLOAT
> if layer.dataType == 0 and layer.layerName == name:
> return layer
> return None
>
>
> def nvds_infer_parse_custom_crowd_count(output_layer_info):
> output_layer = layer_finder(output_layer_info, "output")
>
>
> print("output", output_layer)
>
> if not output_layer:
> sys.stderr.write("ERROR: output layer is missing in output tensors\n")
> return []
>
> num_detection = 0
> print("output_layer.buffer", output_layer.buffer)
>
> if output_layer.buffer:
> num_detection = int(pyds.get_detections(output_layer.buffer, 0))
> print("num detection", num_detection)
**• Hardware Platform (GPU)**
**• DeepStream 5**
**• TensorRT 7.0.0**