Dear nvidia team:
I install the torch and torchvision via this site: jp6/cu122 index , but when import torchvision, I get the runtimeError:“operator torchvision::nms does not exist”, do I miss some operations?
platform: Jetpack6.0, R36 (release), REVISION: 3.0
cuda version: 12.2, V12.2.140
Hi,
Could you share the detailed command you used for installation, including the checksum of the installed packages?
More, it’s recommended to upgrade your environment to our latest JetPack 6.1.
And install the package from the link below instead:
http://jetson.webredirect.org/jp6/cu126
Thanks.
For some reasons,upgrading to JetPack 6.1 is not possible at the moment.
There is the info when I installed the torch and torchvision.
(clips) test@ubuntu:/home1/downloads$ sha256sum torch-2.4.0-cp310-cp310-linux_aarch64.whl
caa8de487371c7f66b566025700635c30728032e0a3acf1c3183cec7c2787f94 torch-2.4.0-cp310-cp310-linux_aarch64.whl
(clips) test@ubuntu:/home1/downloads$ sha256sum torchvision-0.19.0a0+48b1edf-cp310-cp310-linux_aarch64.whl
8c0114b6c62bfa3d60d08b51f1467e0ea1ee4916e5b4b1084db50c2c1f345d93 torchvision-0.19.0a0+48b1edf-cp310-cp310-linux_aarch64.whl
(clips) test@ubuntu:/home1/downloads$ pip install torch-2.4.0-cp310-cp310-linux_aarch64.whl --no-deps
Processing ./torch-2.4.0-cp310-cp310-linux_aarch64.whl
Installing collected packages: torch
Successfully installed torch-2.4.0
(clips) test@ubuntu:/home1/downloads$ pip install torchvision-0.19.0a0+48b1edf-cp310-cp310-linux_aarch64.whl --no-deps
Processing ./torchvision-0.19.0a0+48b1edf-cp310-cp310-linux_aarch64.whl
Installing collected packages: torchvision
Successfully installed torchvision-0.19.0a0+48b1edf
(clips) test@ubuntu:/home1/downloads$
(clips) test@ubuntu:/home1/downloads$
(clips) test@ubuntu:/home1/downloads$ pip list
Package Version
absl-py 2.1.0
accelerate 0.34.2
aiofiles 23.2.1
aiosignal 1.3.1
annotated-types 0.7.0
anyio 4.6.0
astunparse 1.6.3
async-timeout 4.0.3
bitsandbytes 0.40.1
blinker 1.8.2
build 1.2.2.post1
certifi 2024.8.30
cfgv 3.4.0
charset-normalizer 3.4.0
click 8.1.7
cmake 3.27.5
coloredlogs 15.0.1
contourpy 1.3.1
coverage 7.6.3
cycler 0.12.1
DataProperty 1.0.1
dill 0.3.8
distlib 0.3.9
easydict 1.13
einops 0.8.0
evaluate 0.4.3
exceptiongroup 1.2.2
fastapi 0.115.0
ffmpy 0.4.0
filelock 3.16.1
Flask 3.0.3
flatbuffers 24.3.25
fonttools 4.55.0
fsspec 2024.10.0
gekko 1.2.1
gguf 0.10.0
google-pasta 0.2.0
gradio 4.44.0
gradio_client 1.3.0
grpcio 1.67.1
h11 0.14.0
h5py 3.12.1
httpcore 1.0.5
httpx 0.27.2
huggingface-hub 0.26.2
humanfriendly 10.0
identify 2.6.1
idna 3.10
importlib_resources 6.4.5
iniconfig 2.0.0
itsdangerous 2.2.0
Jinja2 3.1.4
jiter 0.5.0
joblib 1.4.2
jsonlines 4.0.0
kiwisolver 1.4.7
libclang 18.1.1
loguru 0.7.2
Markdown 3.7
markdown-it-py 3.0.0
MarkupSafe 3.0.2
matplotlib 3.9.2
mbstrdecoder 1.1.3
mdurl 0.1.2
mpmath 1.3.0
multidict 6.1.0
multiprocess 0.70.16
namex 0.0.8
networkx 3.4.2
ninja 1.11.1.1
nltk 3.9.1
nodeenv 1.9.1
numexpr 2.10.1
numpy 1.26.0
onnxruntime-gpu 1.19.0
onnxsim 0.4.36
openai 0.28.0
opt_einsum 3.4.0
optree 0.13.1
orjson 3.10.7
packaging 24.2
pandas 2.0.0
pathvalidate 3.2.1
peft 0.12.0
pillow 11.0.0
pip 24.2
platformdirs 4.3.6
pluggy 1.5.0
portalocker 2.10.1
pre_commit 4.0.1
psutil 6.0.0
pyarrow 17.0.0
pybind11 2.13.6
pycuda 2024.1.2
pydantic 2.9.2
pydantic_core 2.23.4
pydub 0.25.1
Pygments 2.18.0
pynvml 11.5.3
pyparsing 3.2.0
pyproject_hooks 1.2.0
pytablewriter 1.2.0
pytest 8.3.3
pytest-cov 5.0.0
python-dateutil 2.9.0.post0
python-multipart 0.0.10
pytools 2024.1.14
pytz 2024.2
PyYAML 6.0
regex 2024.9.11
requests 2.32.3
rich 13.8.1
rouge-score 0.1.2
ruff 0.6.8
sacrebleu 2.4.3
safetensors 0.4.5
scikit-learn 1.5.2
semantic-version 2.10.0
sentencepiece 0.2.0
setproctitle 1.3.3
setuptools 75.2.0
setuptools-scm 8.1.0
shellingham 1.5.4
six 1.16.0
sniffio 1.3.1
sqlitedict 2.1.0
starlette 0.38.6
sympy 1.13.1
tabledata 1.3.3
tabulate 0.9.0
tcolorpy 0.1.6
tensorboard-data-server 0.7.2
tensorflow-aarch64 2.16.1
tensorflow-io-gcs-filesystem 0.37.1
termcolor 2.5.0
text-generation 0.7.0
threadpoolctl 3.5.0
tiktoken 0.7.0
tokenizers 0.20.3
tomli 2.0.1
tomlkit 0.12.0
torch 2.4.0
torchvision 0.19.0a0+48b1edf
tqdm 4.67.1
tqdm-multiprocess 0.0.11
transformers-stream-generator 0.0.4
triton 3.1.0
typepy 1.3.2
typer 0.12.5
typing_extensions 4.12.2
tzdata 2024.2
urllib3 2.2.3
uvicorn 0.30.6
virtualenv 20.27.0
websockets 12.0
Werkzeug 3.0.4
wheel 0.44.0
word2number 1.1
wrapt 1.16.0
xxhash 3.5.0
zstandard 0.23.0
zstd 1.5.5.1
(clips) test@ubuntu:/home1/downloads$ python -c “import torch; print(torch.version )”
2.4.0
(clips) test@ubuntu:/home1/downloads$ python3 -c “import torch; print(torch.cuda.is_available())”
True
(clips) test@ubuntu:/home1/downloads$ python3 -c “import torchvision”
Traceback (most recent call last):
File “”, line 1, in
File “/home1/miniconda3/envs/clips/lib/python3.10/site-packages/torchvision/init .py”, line 10, in
from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils # usort:skip
File “/home1/miniconda3/envs/clips/lib/python3.10/site-packages/torchvision/_meta_registrations.py”, line 164, in
def meta_nms(dets, scores, iou_threshold):
File “/home1/miniconda3/envs/clips/lib/python3.10/site-packages/torch/library.py”, line 654, in register
use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1)
File “/home1/miniconda3/envs/clips/lib/python3.10/site-packages/torch/library.py”, line 154, in _register_fake
handle = entry.abstract_impl.register(func_to_register, source)
File “/home1/miniconda3/envs/clips/lib/python3.10/site-packages/torch/_library/abstract_impl.py”, line 31, in register
if torch._C._dispatch_has_kernel_for_dispatch_key(self.qualname, “Meta”):
RuntimeError: operator torchvision::nms does not exist
Hi,
Could you try PyTorch v2.3.0 and TorchVision 0.18.0 shared in the below link?
Below are pre-built PyTorch pip wheel installers for Jetson Nano, TX1/TX2, Xavier, and Orin with JetPack 4.2 and newer.
Download one of the PyTorch binaries from below for your version of JetPack, and see the installation instructions to run on your Jetson. These pip wheels are built for ARM aarch64 architecture, so run these commands on your Jetson (not on a host PC). You can also use the containers from jetson-containers .
PyTorch pip wheels
JetPack 6
PyTorch v2.3.0 JetPack 6.0 (L4T R36.2…
Thanks.
Fixed it by reinstalling the miniconda3.
Thanks