I’m intrigued by the NLP research paper Leveraging Graph to Improve Abstractive Multi-Document Summarization, but I’m having trouble testing the code found on Github. Here’s the error I get: RuntimeError: parallel_for failed: no kernel image is available for execution on the device
. According to the web, people usually encounter this error because their GPU is too old, with a low CUDA Capability value. However, I have a brand new GeForce 3090 with a CUDA Capability value of 8.6. Perhaps this log line yields a clue? I’m kinda lost.
W1023 10:20:11.511365 3292334 device_context.cc:236] Please NOTE: device: 0, CUDA Capability: 86, Driver API Version: 11.1, Runtime API Version: 10.0
$ nvidia-smi
Fri Oct 23 14:31:32 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.23.05 Driver Version: 455.23.05 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce RTX 3090 Off | 00000000:21:00.0 Off | N/A |
| 30% 32C P0 62W / 350W | 0MiB / 24265MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+