I get Segmentation fault after sending three massage. I applied my model on deepstream_test4 and also, I doing post-processing on SGIE
PGIE Config:
[property]
gpu-id=0
process-mode=1
net-scale-factor=0.0039215697906911373
model-engine-file=//home/riotu/codes/models/Secondary_FaceDetect/fd_lpd.caffemodel_b1_gpu0_fp32.engine
labelfile-path=/home/riotu/codes/models/Secondary_FaceDetect/labels.txt
model-file=/home/riotu/codes/models/Secondary_FaceDetect/fd_lpd.caffemodel
proto-file=/home/riotu/codes/models/Secondary_FaceDetect/fd_lpd.prototxt
force-implicit-batch-dim=1
batch-size=1
network-mode=0
num-detected-classes=3
interval=2
gie-unique-id=2
#operate-on-gie-id=1
SGIE Config
[property]
gpu-id=0
process-mode=2
#net-scale-factor=0.00329215686274
net-scale-factor=0.0189601459307
offsets=112.86182266638355;112.86182266638355;112.86182266638355
#onnx-file=/home/jetson-nx/codes/models/facenet/v2_facenet_b16.onnx
model-engine-file=/home/riotu/codes/models/facenet/agx_facenet_dynamic_model.onnx_b16_gpu0_fp16.engine
force-implicit-batch-dim=1
batch-size=16
# 0=FP32 and 1=INT8 2=FP16 mode
network-mode=2
gie-unique-id=3
operate-on-gie-id=2
operate-on-class-ids=0
#is-classifier=1
#classifier-async-mode=1
network-type=100
output-blob-names= Bottleneck_BatchNorm/batchnorm_1/add_1:0
input-object-min-width=10
input-object-min-height=10
model-color-format=0
output-tensor-meta=1
#scaling-filter=1
#scaling-compute-hw=0
maintain-aspect-ratio=1
#secondary-reinfer-interval=16
#avg_mean = 112.86182266638355 avg_std = 52.742210089081475
Linking Pipline:
streammux.link(pgie)
pgie.link(tracker)
tracker.link(nvvidconv1)
nvvidconv1.link(filter1)
filter1.link(face_recogniser)
face_recogniser.link(nvvidconv)
nvvidconv.link(nvosd)
nvosd.link(tee)
queue1.link(msgconv)
msgconv.link(msgbroker)
face_recogniser_sinkpad = face_recogniser.get_static_pad("src")
if not face_recogniser_sinkpad:
sys.stderr.write(" Unable to get sink pad of face_recogniser \n")
face_recogniser_sinkpad.add_probe(Gst.PadProbeType.BUFFER, sgie_sink_pad_buffer_probe, 0)
• Hardware Platform: Nano
• DeepStream Version: 5.1
• JetPack Version: 4.5.1