Hello,
Our workflow spans three GPUs:
Training: RTX 3080 Ti
Integration/Development: RTX 2060
Deployment: RTX 5060
On the 3080 Ti (Ampere) and 5060 (Blackwell), TensorRT for RTX 1.1 (with CUDA 12.9, driver 576.02) builds and runs the ONNX → TensorRT engine successfully.
However, on the RTX 2060 (Turing, builds engines locally), the same code and inference fail at:
’nvinfer1::IExecutionContext *context = engine->createExecutionContext();’
with errors like:
Internal Error: MyelinCheckException: cudnn_graph_utils.h:379: CHECK(false) failed. cuDNN graph compilation failed.
[TensorRT] ICudaEngine::createExecutionContext: Error Code 1: Myelin ([myelin_graph.h:1168: attachExceptionMsgToGraph] MyelinCheckException: cudnn_graph_utils.h:379: CHECK(false) failed. cuDNN graph compilation failed. In nvinfer1::rt::MyelinGraphContext::MyelinGraphContext at runtime/myelin/graphContext.cpp:68).
Even if I make the following if-else when building the engine:
if (major >= 8)
{
config->setFlag(BuilderFlag::kGPU_FALLBACK);
}
else
{
config->setTacticSources(
(1U << static_cast(TacticSource::kCUBLAS)) |
(1U << static_cast(TacticSource::kCUDNN))
);
}
Environment
GPU: RTX 2060 / RTX 3080 Ti / RTX 5060
Driver: 576.02 / 581.29
CUDA: 12.9
cuDNN: 12X
TensorRT: RTX 1.1
OS: Windows 10 x64
So, the questions are:
- Is TensorRT for RTX 1.1 not fully compatible with Turing-based GPUs (such as RTX 2060)?
- Are there recommended workarounds (e.g., disabling Myelin/cuDNN-Graph, generating engines directly on Turing, and so on…)
- Does TensorRT 10.8+ support GPUs from 1650 (Turing) to 5060 (Blackwell) (only static graph)?