What is the object category in tensor rt file for fasterrcnn

What is the object class if I am training a custom model for faster rcnn using only 1 class . the config used is given below : is 0 background and 1 the the object class or is the other way around.

Copyright © 2017-2019, NVIDIA CORPORATION. All rights reserved.

random_seed: 42
enc_key: ‘my key’
verbose: True
network_config {
input_image_config {
image_type: RGB
image_channel_order: ‘bgr’
size_height_width {
height: 720
width: 1280
}
image_channel_mean {
key: ‘b’
value: 103.939
}
image_channel_mean {
key: ‘g’
value: 116.779
}
image_channel_mean {
key: ‘r’
value: 123.68
}
image_scaling_factor: 1.0
max_objects_num_per_image: 100
}
feature_extractor: “resnet:10”
anchor_box_config {
scale: 64.0
scale: 128.0
scale: 256.0
ratio: 1.0
ratio: 0.5
ratio: 2.0
}
freeze_bn: True
freeze_blocks: 0
freeze_blocks: 1
roi_mini_batch: 256
rpn_stride: 16
conv_bn_share_bias: True
roi_pooling_config {
pool_size: 7
pool_size_2x: False
}
all_projections: True
use_pooling:False
}
training_config {
kitti_data_config {
data_sources: {
tfrecords_path: “/mnt/nfs/mldata/tlt_data/sample_tfrecords/sample_image-fold-*”
image_directory_path: “/mnt/nfs/mldata/tlt_data/”
}
image_extension: ‘png’
target_class_mapping {
key: ‘trafficlight’
value: ‘trafficlight’
}
validation_fold: 0
}
data_augmentation {
preprocessing {
output_image_width: 1280
output_image_height: 720
output_image_channel: 3
min_bbox_width: 1.0
min_bbox_height: 1.0
}
spatial_augmentation {
hflip_probability: 0.5
vflip_probability: 0.0
zoom_min: 1.0
zoom_max: 1.0
translate_max_x: 0
translate_max_y: 0
}
color_augmentation {
hue_rotation_max: 0.0
saturation_shift_max: 0.0
contrast_scale_max: 0.0
contrast_center: 0.5
}
}
enable_augmentation: True
batch_size_per_gpu: 1
num_epochs: 300
pretrained_weights: “/mnt/nfs/nvidia_tlt/tlt-experiments/examples/faster_rcnn/tlt_pretrained_object_detection_vresnet10/resnet_10.hdf5”
output_model: “/mnt/nfs/nvidia_tlt/tlt-experiments/examples/faster_rcnn/sample_images_checkpoint/frcnn_trafficlight_resnet10_sample_images.tlt”
rpn_min_overlap: 0.3
rpn_max_overlap: 0.7
classifier_min_overlap: 0.0
classifier_max_overlap: 0.5
gt_as_roi: False
std_scaling: 1.0
classifier_regr_std {
key: ‘x’
value: 10.0
}
classifier_regr_std {
key: ‘y’
value: 10.0
}
classifier_regr_std {
key: ‘w’
value: 5.0
}
classifier_regr_std {
key: ‘h’
value: 5.0
}

rpn_mini_batch: 256
rpn_pre_nms_top_N: 12000
rpn_nms_max_boxes: 2000
rpn_nms_overlap_threshold: 0.7

reg_config {
reg_type: ‘L2’
weight_decay: 1e-4
}

optimizer {
adam {
lr: 0.00001
beta_1: 0.9
beta_2: 0.999
decay: 0.0
}
}

lr_scheduler {
step {
base_lr: 0.00001
gamma: 1.0
step_size: 30
}
}

lambda_rpn_regr: 1.0
lambda_rpn_class: 1.0
lambda_cls_regr: 1.0
lambda_cls_class: 1.0

inference_config {
images_dir: ‘/mnt/nfs/mldata/tlt_data/sample_images/’
model: ‘/mnt/nfs/nvidia_tlt/tlt-experiments/examples/faster_rcnn/sample_images_checkpoint/frcnn_trafficlight_resnet10_sample_images.epoch300.tlt’
detection_image_output_dir: ‘/mnt/nfs/mldata/tlt_data/test/inference_results/’
labels_dump_dir: ‘/mnt/nfs/mldata/tlt_data/test/inference_labels_dump/’
rpn_pre_nms_top_N: 6000
rpn_nms_max_boxes: 300
rpn_nms_overlap_threshold: 0.2
bbox_visualize_threshold: 0.2
classifier_nms_max_boxes: 300
classifier_nms_overlap_threshold: 0.3
}

evaluation_config {
model: ‘/mnt/nfs/nvidia_tlt/tlt-experiments/examples/faster_rcnn/frcnn_trafficlight_resnet10.tlt’
labels_dump_dir: ‘/mnt/nfs/nvidia_tlt/tlt-experiments/data/faster_rcnn/test_dump_labels/’
rpn_pre_nms_top_N: 6000
rpn_nms_max_boxes: 300
rpn_nms_overlap_threshold: 0.7
classifier_nms_max_boxes: 300
classifier_nms_overlap_threshold: 0.3
object_confidence_thres: 0.0001
use_voc07_11point_metric:False
}

}

See https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps/blob/master/nvdsinfer_customparser_frcnn_tlt/frcnn_labels.txt for reference.
Train 4 classes, then the labels are:

Bicycle
Car
Person
Roadsign
background