And the same question for the rest of the python files with architecture names.
Thanks in advance.
Hi,
You can find the corresponding document in the below link:
<img src="https://github.com/dusty-nv/jetson-inference/raw/master/docs/images/deep-vision-header.jpg" width="100%">
<p align="right"><sup><a href="pytorch-collect.md">Back</a> | <a href="pytorch-collect-detection.md">Next</a> | </sup><a href="../README.md#hello-ai-world"><sup>Contents</sup></a>
<br/>
<sup>Transfer Learning - Object Detection</sup></s></p>
# Re-training SSD-Mobilenet
Next, we'll train our own SSD-Mobilenet object detection model using PyTorch and the [Open Images](https://storage.googleapis.com/openimages/web/visualizer/index.html?set=train&type=detection&c=%2Fm%2F06l9r) dataset. SSD-Mobilenet is a popular network architecture for realtime object detection on mobile and embedded devices that combines the [SSD-300](https://arxiv.org/abs/1512.02325) Single-Shot MultiBox Detector with a [Mobilenet](https://arxiv.org/abs/1704.04861) backbone.
<a href="https://arxiv.org/abs/1512.02325"><img src="https://github.com/dusty-nv/jetson-inference/raw/dev/docs/images/pytorch-ssd-mobilenet.jpg"></a>
In the example below, we'll train a custom detection model that locates 8 different varieties of fruit, although you are welcome to pick from any of the [600 classes](https://github.com/dusty-nv/pytorch-ssd/blob/master/open_images_classes.txt) in the Open Images dataset to train your model on. You can visually browse the dataset [here](https://storage.googleapis.com/openimages/web/visualizer/index.html?set=train&type=detection).
<img src="https://github.com/dusty-nv/jetson-inference/raw/dev/docs/images/pytorch-fruit.jpg">
To get started, first make sure that you have [JetPack 4.4](https://developer.nvidia.com/embedded/jetpack) or newer and [PyTorch installed](pytorch-transfer-learning.md#installing-pytorch) for **Python 3.6** on your Jetson. JetPack 4.4 includes TensorRT 7.1, which is the minimum TensorRT version that supports loading SSD-Mobilenet via ONNX. And the PyTorch training scripts used for training SSD-Mobilenet are for Python3, so PyTorch should be installed for Python 3.6.
## Setup
> **note:** first make sure that you have [JetPack 4.4](https://developer.nvidia.com/embedded/jetpack) or newer on your Jetson and [PyTorch installed](pytorch-transfer-learning.md#installing-pytorch) for **Python 3.6**
This file has been truncated. show original
Thanks.
It is an alternate architecture that came from the original upstream author. I have only tested SSD-Mobilenet-v1 through that project and found that it works well with exporting to ONNX and importing to TensorRT.
Have you tested the other architectures in your code for exporting to ONNX?
At the time, SSD-Mobilenet-v1 was the only one working with PyTorch ONNX export + ONNX import into TensorRT.