Yolov4_tiny_usa_deployable for LPD don't detect anything

• GPU
*• DeepStream 7.0
• CUDA 12.6
• detection bug
• Try a deepstream pipeline with LPDnet model pruned_v2.1

Using yolov4_tiny_usa_deployable for pruned_v2.1 (LPDNet | NVIDIA NGC) on my deepstream pipeline, it detected absolutely nothing, 0 licence plate.

Here my pipeline

pipeline:
  - v4l2src:
      device: /dev/video0
  - capsfilter:
      caps: "image/jpeg, width=1920, height=1080, framerate=30/1"
  - jpegdec: {}
  - videoconvert: {}
  - nvvideoconvert: {}
  - capsfilter:
      caps: "video/x-raw(memory:NVMM), format=RGBA, width=1920, height=1080"
  - mux.sink_0:
       nvstreammux:
          name: mux
          batch-size: 1
          width: 1920
          height: 1080
          batched-push-timeout: 4000000
          live-source: 1
          num-surfaces-per-frame: 1
          sync-inputs: 0
          max-latency: 0
  - nvinfer:
      config-file-path: ../infer_cfg/config_infer_secondary_lpdnet_YOLO.txt
  - nvtracker:
      tracker-width: 640
      tracker-height: 384
      gpu-id: 0
      ll-lib-file: /opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
      ll-config-file: ../infer_cfg/config_tracker_NvDCF_perf.yml
  - nvdsanalytics:
      name: "analytics"
      config-file: ../infer_cfg/analytics.txt
  - nvvideoconvert: {}
  - nvdsosd:
      name: onscreendisplay
  - fpsdisplaysink:
      name: fps-display
      video-sink: nveglglessink
      text-overlay: false
      sync: false

Here my config file for the model

[property]
gpu-id=0
net-scale-factor=1.0
offsets=103.939;116.779;123.68
model-color-format=1
labelfile-path=../../models/LP/LPD/usa_lpd_label.txt
tlt-encoded-model=../../models/LP/LPD/yolov4_tiny_usa_deployable.etlt
int8-calib-file=../../models/LP/LPD/yolov4_tiny_usa_cal.bin
tlt-model-key=nvidia_tlt
infer-dims=3;480;640  # Corrected from `uff-input-dims`
batch-size=16
network-mode=1  # INT8 mode (ensure your hardware supports it)
num-detected-classes=1
process-mode=2  # Secondary inference
interval=0
gie-unique-id=2
network-type=0  # Detector type
operate-on-gie-id=1
operate-on-class-ids=0
cluster-mode=3  # NMS clustering mode
output-blob-names=BatchedNMS
parse-bbox-func-name=NvDsInferParseCustomBatchedNMSTLT
custom-lib-path=../../deepstream_tao_apps/post_processor/libnvds_infercustomparser_tao.so
#enable-dla=1  # Uncomment if using Deep Learning Accelerator (DLA)

[class-attrs-all]
pre-cluster-threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

here my output/warnings before launch :

gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
[NvMultiObjectTracker] Initialized
0:00:02.101643023 419733 0x57888284f920 INFO                 nvinfer gstnvinfer.cpp:682:gst_nvinfer_logger:<nvinfer0> NvDsInferContext[UID 2]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:2109> [UID = 2]: Trying to create engine from model files
WARNING: [TRT]: onnx2trt_utils.cpp:374: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
WARNING: [TRT]: onnx2trt_utils.cpp:400: One or more weights outside the range of INT32 was clamped
WARNING: [TRT]: builtin_op_importers.cpp:5221: Attribute caffeSemantics not found in plugin node! Ensure that the plugin creator has a default value defined or the engine may fail to build.
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 125) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 207) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 208) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 210) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 217) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 218) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 224) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 225) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 289) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 290) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 293) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 294) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 298) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 299) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 555) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 556) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 559) [Constant]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor (Unnamed Layer* 560) [Shuffle]_output, expect fall back to non-int8 implementation for any layer consuming or producing given tensor
WARNING: [TRT]: Missing scale and zero-point for tensor BatchedNMS, expect fall back to non-int8 implementation for any layer consuming or producing given tensor

If you are using CUDA 12.6, please upgrade your DeepStream version to 7.1.

About the LPD model, you can try to use our latest version: 2.3.1.