Please provide complete information as applicable to your setup.
**• Hardware Platform (Jetson / GPU)Jetson Orin NX
**• DeepStream Version 7.0
**• JetPack Version (valid for Jetson only) 6.0
**• TensorRT Version 8.6.2.3
**• NVIDIA GPU Driver Version (valid for GPU only) GPU
**• Issue Type( questions, new requirements, bugs) question
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing)
• Requirement details( This is for new requirement. Including the module name-for which plugin or for which sample application, the function description)
I use yolov7 engine on deepstream in Orin NX board.
I use tensorrt to generate engine from onnx file
And I test different image size 512512 and 640640
I find that when I use input 640640 my deepstream pipeline works not good , the video is stuck.But when I use 512512 input it in working order.
I use jtop to check gpu and memory, they all not full load.
Here is my test pipeline:
gst-launch-1.0 rtspsrc latency=200 location=rtsp://*******:*****@192.168.230.11:554/h265/ch1/main/av_stream drop-on-latency=1 ! rtph265depay ! nvv4l2decoder enable-max-performance=1
! videorate ! “video/x-raw(memory:NVMM), framerate=(fraction)25/1”
! mux.sink_0 nvstreammux name=mux batch_size=1 width=1920 height=1080 batched-push-timeout=400 live-source=1 ! nvinfer config-file-path=/opt/nvidia/deepstream/deepstream-7.0/sources/objectDetector_Yolo/config_infer_primary_TX_Person.txt batch-size=8 unique-id=1 ! nvtracker name=tracker1 ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_NvDCF_perf.yml ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so tracker-width=640 tracker-height=384 user-meta-pool-size=512
! nvstreamdemux name=demux demux.src_0
! nvvideoconvert ! ‘video/x-raw(memory:NVMM), format=RGBA’ ! nvdsosd process-mode=2 ! nv3dsink
My yolov7 export by this command
python export.py --weights best.pt --grid --end2end --simplify --device cpu --batch-size 8 --img-size 640 640
Can somebody explain this phenomenon or have some experimental result about yolov7 run on Orin NX by deepstream pipeline