
Argus 0.97 API Specification

August 10, 2018

Contents

1 Introduction 1

2 Fundamentals 2
2.1 Types . 2

2.1.1 Enumerations . 2
2.1.2 UUIDs . 2
2.1.3 Data Types . 3
2.1.4 Base Classes . 4

2.2 Timestamps . 4
2.3 Objects and Interfaces . 4
2.4 Versioning . 5
2.5 Object Lifetimes . 5

2.5.1 UniqueObj Smart Pointer . 6
2.6 Extensions . 6
2.7 Capture Sessions . 6

2.7.1 Capture Methods . 6
2.7.2 Capture Timing and Interactions . 8

2.8 Output Streams . 8
2.8.1 Buffer Streams . 8

2.8.1.1 Buffer Types . 9
2.8.1.2 Sync Types . 10

2.8.2 EGLStreams . 10
2.8.2.1 EGLStream Utility Namespace . 10
2.8.2.2 EGLStream Buffer Formats . 11

2.9 Events . 12
2.10 Multiple Clients and Multiple Threads . 12

3 Argus Objects and Interfaces 13
3.1 CameraProvider . 13
3.2 CameraDevice . 13
3.3 SensorMode . 14
3.4 CaptureSession . 15
3.5 OutputStreamSettings . 16

3.5.1 STREAM TYPE BUFFER . 16
3.5.2 STREAM TYPE EGL . 17

3.6 OutputStream . 17
3.6.1 STREAM TYPE BUFFER . 17
3.6.2 STREAM TYPE EGL . 18

3.7 BufferSettings . 18
3.8 Buffer . 19

3.8.1 BUFFER TYPE EGL IMAGE . 19
3.8.2 SYNC TYPE EGL SYNC . 19

3.9 Request . 19
3.9.1 Request Settings . 21

2

3.9.1.1 Source Settings . 21
3.9.1.2 Autocontrol Settings . 21
3.9.1.3 Stream Settings . 23
3.9.1.4 Denoise Settings . 23
3.9.1.5 Edge Enhance Settings . 23

3.10 CaptureMetadata . 24
3.11 Event . 27

3.11.1 EVENT TYPE ERROR . 27
3.11.2 EVENT TYPE CAPTURE STARTED . 27
3.11.3 EVENT TYPE CAPTURE COMPLETE . 28

3.12 EventQueue . 28
3.13 EventProvider . 28

i

List of Tables

1 ICameraProperties . 14
2 ISensorMode . 14
3 IBufferOutputStreamSettings . 17
4 IOutputStreamSettings . 17
5 IEGLImageBufferSettings . 18
6 ISourceSettings . 21
7 IAutocontrolSettings . 22
8 IStreamSettings . 23
9 IDenoiseSettings . 23
10 IEdgeEnhanceSettings . 24
11 ICaptureMetadata . 25
12 IDenoiseMetadata . 27
13 IEdgeEnhanceMetadata . 27

ii

1 Introduction

Argus is an API for acquiring images and associated metadata from cameras. The fundamental
operation is a capture: acquiring an image from a sensor and processing it into a final output image.

Currently, Argus is supported on Android and L4T on NVIDIA Tegra TX1 and TX2-based platforms.

Argus is designed to address a number of fundamental requirements:

• Support for a wide variety of use cases (traditional photography, computational photography,
video, computer vision, and other application areas.) To this end, Argus is a frame-based
API; every capture is triggered by an explicit request that specifies exactly how the capture
is to be performed.

• Support for multiple platforms, including L4T and Android.

• Efficient and simple integration into applications and larger frameworks. In support of this,
Argus delivers images in one of two ways:

– EGLStreams, which are directly supported by other system components such as OpenGL,
Cuda, and GStreamer. EGLStreams manage the allocation and lifespan of all buffers,
and they are passed between Argus and the consumer directly such that no buffer copies
are required during delivery to the consumer.

– Buffer OutputStreams, which are created and managed by the client in order to wrap
native buffer resources as Buffer objects that are used as the destination for capture
requests.

• Expansive metadata along with each output image.

• Support for multiple sensors, including both separate control over independent sensors and
access to synchronized multi-sensor configurations. (The latter is unsupported in the current
release.)

• Support for multiple simultaneous clients and system-wide camera access and permission
control via a system-level daemon (i.e., nvargus-daemon).

• Version stability and extensibility, which are provided by unchanging virtual interfaces and
the ability for vendors to add specialized extension interfaces.

Argus provides functionality in a number of different areas:

• Captures with a wide variety of settings.

• Optional autocontrol (such as auto-exposure and auto-white-balance.)

• Multiple options for metadata delivery via events, output streams, or EGLStream metadata.

• Image post-processing such as noise reduction and edge sharpening.

• Notification of errors, image acquisition start, and other events via synchronous event queues.

• Wide range of support for consuming output images via zero-copy EGLStream consumers or
direct access to application-allocated and managed native buffer resources.

1

Functionality not provided by Argus:

• Auto-focus. (Will be added in a later release.)

• Reprocessing of YUV images (such as that required by Android’s Zero Shutter Lag feature.)

• Reprocessing of Bayer (raw) images. (Will be added in a later release.)

2 Fundamentals

2.1 Types

Argus/Types.h defines fundamental enumerations, data types, and classes used in the API.

2.1.1 Enumerations

Standard integer enumerant values can be unsuitable for an extensible API like Argus due to the
possibility for conflicts or overlap when new values are added by multiple vendors. Therefore, the
use of enums in Argus is limited to the Status return code as well as for constant types that are
guaranteed not to be extended (for example, the X/Y coordinates of a 2D point).

Status
Reports the result of an Argus operation. STATUS_OK signifies a successfully completed
operation. All other return values are errors and should be handled appropriately.

BayerChannel
Identifies the color channels of a Bayer image.

RGBChannel
Identifies the color channels of an RGB image.

Coordinate
Identifies the coordinates of a 2D or 3D point.

2.1.2 UUIDs

Besides the standard integer enumerants listed above, 128-bit Universally Unique Identifiers (UUIDs)
are used to identify all other settings and interfaces in Argus. Since UUIDs are virtually guaranteed
not to conflict, this allows for new settings and enumerant values to be added by multiple vendors
or extensions without the potential for conflicts.

All constant UUIDs that are used to identify object types or setting values extend the NamedUUID
subclass, which includes a string value along with the UUID value itself. These named UUID types
ensure type safety, and the value string is helpful for debugging purposes.

Examples of key NamedUUID types include:

2

ExtensionName
Identifies an extension to the Argus API; used with supportsExtension() to determine
runtime extension support.

InterfaceID
Identifies an Interface; used with getInterface().

PixelFormat
Defines a pixel format that may be used for an OutputStream.

SensorModeType
Defines the type of image data that is output by the imaging sensor before any sort of
image processing.

Other NamedUUID types are used to control capture settings, such as DenoiseMode, and are
documented by their settings interfaces.

2.1.3 Data Types

Most of the data types that Argus provides extend from the Tuple template class, which provides
a finite ordered list of typed elements and provides type safety and named data accessors using
template specializations:

BayerTuple
Provides the 4 components of a Bayer quad (identified by the BayerChannel channels).

RGBTuple
Provides the 3 components of an RGB pixel (identified by the RGBChannel channels).

Point2D
Provides the X and Y coordinates of a 2-dimensional point (identifed by Coordinates).

Size2D
Provides the width and height of a 2-dimensional size.

Rectangle
Provides the bounding box of a rectangle (left, top, right, and bottom coordinates).

Range
Provides the minimum and maximum values allowed for a range.

AcRegion
Provides an autocontrol region of interest by extending Rectangle and adding a floating-point
weight value.

Additional non-Tuple data types defined by Argus include:

Array2D
Provides data storage and member access methods for a 2-dimensional array.

3

2.1.4 Base Classes

Argus objects and interfaces depend on and extend a few key base classes:

NonCopyable
A class that overrides the standard copy operator and disables the inheriting class from
being copied. All Argus objects and interfaces are non copyable.

Interface
The base class inherited by all Interfaces, and the base type returned by getInterface().

InterfaceProvider
The base class for any Argus object which provides Interfaces (i.e., implements getInterface()).

Destructable
The base class for any Argus object which must be destroyed by the client (i.e., implements
destroy()).

2.2 Timestamps

Unless otherwise stated, all timestamp values returned by Argus will be uint64 t values representing
the number of nanoseconds since the start of the system’s monotonic clock (i.e., CLOCK MONOTONIC).

Similarly, all timeout parameters passed to Argus by the client must be provided in nanoseconds.
The constant TIMEOUT INFINITE may be used to indicate an infinite timeout.

2.3 Objects and Interfaces

Argus makes a distinction between objects and interfaces:

• An object is an independent API entity with a well-defined lifetime but no methods specific
to its type.

• An interface is a pure virtual class that the client acquires from an object, and uses to perform
specific operations on the object that provided it.

Each interface has an associated UUID – a 128-bit unique identifier that is assigned to that interface.
These UUIDs will never change. These UUIDs are defined with the InterfaceID type, a subclass
of NamedUUID. They are used to acquire interfaces from objects (see getInterface() below).
As a convenience, each interface also defines a static id() method that returns the UUID for that
interface.

Every interface inherits from the Interface base class, which defines no public methods but ensures
that subclasses are not copyable or assignable.

Every object inherits from the InterfaceProvider virtual base class, which defines the getInterface()
method:

virtual I n t e r f a c e ∗ g e t I n t e r f a c e (const In t e r f a c e ID& id) = 0 ;

4

The client acquires interfaces using this method. If the object supports the requested interface,
this method will return a pointer to an instance of that interface; otherwise it returns NULL. An
example using the Event object and its IEvent interface:

u in t 64 t getEventTime (Event∗ evt) {
I n t e r f a c e ∗ i f = evt−>g e t I n t e r f a c e (IEvent : : id ()) ;
IEvent∗ i e v t = static cast<IEvent∗>(i f) ;
return i e v t ? i evt−>getTime () : 0ULL;

}

The convenience function interface cast<>() calls getInterface() on the object provided and
returns a pointer to the interface type specified as the template argument (or NULL if the object is
NULL, or the interface cannot be acquired). This example illustrates its use:

u in t 64 t getEventTime (Event∗ evt) {
IEvent∗ i e v t = i n t e r f a c e c a s t<IEvent>(evt) ;
return i e v t ? i evt−>getTime () : 0ULL;

}

2.4 Versioning

Argus version compatibility is managed with one simple rule: Once an interface has been released,
it will never change. It may eventually become deprecated, and no longer be available at runtime,
but the signatures in the interface will not change.

Important note: Interface immutability is not guaranteed for beta versions of Argus. Beta version
numbers begin with zero; for example, Release 0.91.

2.5 Object Lifetimes

The lifetime of any Argus interface is the same as the lifetime of the object providing that interface.
The client takes no explicit action to release or destroy an interface.

The lifetime of an Argus object depends on whether or not the object inherits from the Destructable
base class, which declares the destroy() method:

virtual void dest roy () = 0 ;

If an Argus object inherits from Destructable, the client must call destroy() when it is finished
using the object. After that call, the object (and all interfaces acquired from it) are no longer
valid. The implementation is free to immediately destroy the object, or to defer destruction. For
some objects (in particular, CaptureSession), destroy() may block until associated operations
are complete.

Argus objects that do not inherit from Destructable are generally provided by and share the
lifespan of a parent Argus object, and therefore they are often referred to as child objects. One
example of a child object is the CaptureMetadata object that may be attached to an Event:
this metadata object will remain valid throughout the life of the Event that returned it. The use
and lifespan of all child objects will be documented by the API methods that provide them.

5

2.5.1 UniqueObj Smart Pointer

While clients are free to explicitly call destroy() on every Destructable object that they create,
the recommended way to manage Destructable objects is through the use of the UniqueObj
smart pointer template. This class mimicks the use of std::unique ptr, offering a movable smart
pointer which calls destroy() on the Destructable object being referenced by the pointer once it
leaves scope.

The interface cast method is overloaded to accept UniqueObj pointers, allowing clients to do
the following:

{
UniqueObj<Request> r eque s t (i S e s s i on−>createRequest ()) ;
IRequest ∗ iRequest = i n t e r f a c e c a s t<IRequest>(r eque s t) ;
// r e que s t i s de s t roy () ed when i t l e a v e s scope .

}

2.6 Extensions

Due to the exclusive use of Interfaces, Argus is inherently extensible by nature: new interfaces
can be defined and exposed by an Argus implementation as needed while maintaining backwards
compatibility with applications that do not use the extension. Extensions will often introduce new
objects or interfaces to the API, but they are not required to do so; an extension may simply relax
previous restrictions on the API and allow behavior that was previously disallowed. For example,
an extension may just add a new PixelFormat UUID that can be used with any method accepting
PixelFormat values. All extensions added to Argus must include an ExtensionName identifier
which is used by the ICameraProvider::supportsExtension() method to query the existence
of an extension in an Argus implementation. This allows a client to check for required extension
support before creating any CaptureSessions. Note that support for an extension does not imply
that the hardware or resources used by the extension are available; standard interface checking
and other extension-specific runtime checks, as described by the extension documentation, should
always be performed before any extension is used.

2.7 Capture Sessions

Argus is a capture-based API, meaning that a client must make explicit capture requests to receive
output from the sensor(s). The client uses CaptureSession objects to make these requests. A
capture session is bound to one or more sensors, and each sensor can be bound to only one capture
session.

2.7.1 Capture Methods

The ICaptureSession interface defines four capture methods:

capture() A standard single capture call; it produces one output on each of the streams
enabled in the request.

6

captureBurst() Like capture(), this will create a single output for the streams enabled in
each request, but multiple independent requests can be specified as a vector
to this call. (See further explanation below.)

repeat() Equivalent to calling capture() repeatedly until stopRepeat() is called.

repeatBurst() Equivalent to calling captureBurst() repeatedly until stopRepeat() is
called.

All four of these calls require one or more capture requests, which must be configured prior to issuing
the captures. The client creates a Request by calling ICaptureSession::createRequest(), and
configures it via the available interfaces. (The client can change or delete a Request without
affecting any earlier captures that used it.)

Each Request object exports an IRequest interface which is used to set capture settings: output
streams, stream settings, autocontrol settings, and source settings. Likewise the client must create
an output Stream object(s) with ICaptureSession::createOutputStream(). More than one
output stream can be created and used with the Session.

The signature for capture() looks like this:

u in t 32 t capture (const Request∗ request ,
u i n t 64 t timeout = TIMEOUT INFINITE,
Status ∗ s t a tu s = NULL) ;

A single call to capture() will capture a single frame, using the settings and output stream(s)
specified in the request. If too many captures are pending, Argus will block until there is enough
space for the new capture, or set *status to STATUS_TIMEOUT if the timeout period is exceeded. The
return value from capture() is a capture id, unique within the session, which will be included with
all events and other outputs from this capture. The capture id starts at 1 and will be incremented
by one from each successfully submitted capture request to the next. If this counter ever exceeds
the uint32 t limits, it will wrap back to 1. This counter is shared between all other capture request
methods, and so the capture IDs will be unique and incremental across all submission methods
described below. If the call fails for any reason, the return value will be zero and the error status
code will be written to status.

Burst captures take a list of Requests instead of just one. Each call to captureBurst() will
result in N captures, where N is the number of Requests in the requests parameter:

u in t 32 t captureBurst (const vector<const Request∗>& reques t s ,
u i n t 64 t timeout = TIMEOUT INFINITE,
Status ∗ s t a tu s = NULL) ;

The first capture will be performed using the first item in requests, the second capture using the
second item in requests, and so on. The return value from captureBurst() is the capture id of
the first capture. The second capture will be assigned a capture id of (return value + 1), and so
on. In effect, a successful burst capture request will increment the counter by N. If the call fails
for any reason, such as exceeding the maximum number of burst requests, the return value will be
zero and the error status code will be written to status.

The number of requests in a burst can be no more than the value returned by ICapture
Session::maxBurstRequests().

7

The requests used in a burst can have any properties, but best results may be achieved by following
a few guidelines:

• Use the same sensor mode for every request. Otherwise, there may be large performance
delays every time the sensor mode changes, resulting in dropped frames and lower overall
frame rate.

• Use the same high-level autocontrol settings (for example, whether auto-exposure is enabled)
for all requests.

• Use requests that were created with the same CaptureIntent if possible.

Calls to repeat() and repeatBurst() return the capture id of the first capture submitted. Both
of these methods will continually capture frames until stopRepeat() is called. Even after stop
Repeat() has been called, captures that have already been submitted will continue to be processed,
so the application should still expect events and output frames to be delivered from those captures.

2.7.2 Capture Timing and Interactions

All of the capture methods are blocking calls, returning as soon as the capture request is accepted
by the underlying driver. Call durations will vary based on the number of captures in the system
and camera pipeline state.

When a repeating capture is in effect, the client may still call another capture method. If the
new method is one of the repeating capture methods, it will replace the current repeating capture
method, but captures already being processed from the earlier method will still be completed. If
the new method is not a repeating capture method, it will be inserted into the stream of repeating
captures. The timing of that inserted capture is not guaranteed; for example, other captures from
the repeating sequence may be submitted before the new call completes. However, capture bursts
will never be interrupted by other capture calls. Once a burst request begins processing, all the
requests in that burst will be handled before any other captures occur.

2.8 Output Streams

All capture requests submitted to Argus must write their capture output to one or more Output
Stream objects created by the CaptureSession. There are two types of OutputStream objects:

2.8.1 Buffer Streams

Identified with the STREAM TYPE BUFFER StreamType, a Buffer Stream is an Output
Stream that wraps a set of client-allocated and managed native buffer resources as Buffer objects
within the stream. These Buffer objects are acquired from the OutputStream when they have
been written by a capture request and made available to the client, and then released back to the
stream when the Buffer may be reused for another capture.

8

Buffer objects point directly to the underlying data store of the native buffer being wrapped, and
so capture results will be written directly to the buffer allocation without requiring another copy
post-capture.

Since the application is responsible for allocating and populating the set of Buffers to use in a
stream, it is also the client’s responsibility to ensure that there are enough Buffers allocated to
maintain a capture pipeline depth that is deep enough to prevent frame drops. This buffer count is
often dependent on many variables, from image size to overall system load, and generally requires
experimentation to find the optimal number of buffers.

To further help with efficient hardware pipelining, Buffer objects may optionally support sync
primitives in order to allow buffers to be passed between Argus and the client with sync information
to block on any pending buffer reads and/or writes before proceeding. For example, a Buffer object
may be acquired from Argus before the image data has been fully written to the buffer, but an
acquire sync will be made available to the client to wait on before it may access the data. Similarly,
the client can provide a release sync when the Buffer is released to block the Argus capture writes
on a pending client operation.

2.8.1.1 Buffer Types

Buffer objects that are created in a buffer stream wrap native buffer resources and are configured
using an OutputStreamSettings object, so an Interface to OutputStreamSettings must exist
for each native resource type that can be wrapped by a Buffer. Due to the platform-specific nature
of native buffer resources, however, the only native buffer resources that can be used with the core
Argus API are EGLImages. Any other native buffer types must be supported through the use of
platform-specific extensions and interfaces (of which there are currently none).

BUFFER TYPE EGL IMAGE is currently the only supported BufferType. When a buffer
output stream is using the BUFFER TYPE EGL IMAGE type, the BufferSettings objects
that the stream returns from createBufferSettings() will expose the IEGLImageBufferSettings
interface; this interface is used to set the handle of the EGLImage that will be wrapped by the new
Buffer object that is created when the settings are then passed to createBuffer().

Buffer objects that wrap EGLImage resources act as EGLImage siblings, and Argus captures that
write to these Buffers will write directly to the EGLImage data store. Note, however, that other
EGLImage siblings may need to be invalidated once the capture is complete in order to reference
the new image data. For example, an EGLImage may need to be rebound to a GL texture object
to invalidate any previous cached texture data. Details on the use of EGLImages outside of the
Argus API are outside of the scope of this document; documentation may be found in the Khronos
EGL registry: https://www.khronos.org/registry/egl/.

Note that there is currently no mechanism to determine which EGLImage image formats will be
compatible with Argus until the Buffer has actually been created from the EGLImage. Once the
Buffer has been created, it can be passed to supportsOutputStreamFormat() to check that the
buffer is compatible before continuing to submit capture requests.

9

https://www.khronos.org/registry/egl/

2.8.1.2 Sync Types

Sync types generally have the same platform-specific requirements as native buffer types, and so
the only SyncType that is currently supported is SYNC TYPE EGL SYNC. The use of this
sync type means that Buffer objects acquired and released from the stream will have EGLSync
objects attached which may be used to synchronize image reads/writes with any API that supports
EGLSync objects. The EGLSync object may be (EGL NO SYNC) if no sync is required for that
frame.

Note that sync support is optional, and the default SyncType is SYNC TYPE NONE. In
this case, all buffer reads and writes must be complete before the Buffer is released or acquired,
respectively.

2.8.2 EGLStreams

Argus supports image output to EGLStreams by assuming the role of an EGLStream producer,
which is provided by the STREAM TYPE EGL stream type. EGLStreams facilitate simple
and efficient transfer of image buffers between EGLStream-enabled APIs, and have been extended
by numerous extensions to further enhance their utility beyond the basic stream features. The
majority of the EGLStream API and documentation is maintained by Khronos registry and is
outside the scope of this document [see https://www.khronos.org/registry/egl/]

Configuring an EGLStream output stream requires the use of the IEGLOutputStreamSettings
interface to set the pixel format, resolution, and EGLDisplay for the stream. Once the Output
Stream object has been created, IEGLOutputStream::getEGLStream() will then return the
newly created EGLStream handle which may be used to connect the EGLStream consumer.

Once an EGLStream is fully connected to an OutputStream, each capture request outputting to
this stream will output a new frame to the EGLStream. These frames can then be acquired by one
of the many EGLStream consumer endpoints that can be attached to the stream, including those
outside the Argus namespace. These may include endpoint APIs such as OpenGL, CUDA, and
GStreamer. How these consumers acquire and release frames from the stream are documented by
their respective specifications.

Note that the size of the EGLStream buffer pool as well as all buffer data synchronization is handled
internally by the EGLStream.

2.8.2.1 EGLStream Utility Namespace

In addition to the EGLStream consumer endpoints that already exist within the Khronos registry,
Argus introduces an EGLStream namespace and Consumer class which provides various interfaces
to acquire and read frames and image data directly from an EGLStream. Consumer objects are
created using the static Consumer::create() method, which allows the EGLStream namespace
and Consumer objects to be used without a CameraProvider . It is also not a requirement that
the producer endpoint be connected to Argus; the Consumer object can be used in conjunction
with any EGLStream producer. The core interfaces supported by a Consumer object are:

10

https://www.khronos.org/registry/egl/

IStreamConnection
Provides controls to connect/disconnect from the stream.

IFrameConsumer
Provides methods to acquire/release frames and Frame objects.

The IFrameConsumer::acquireFrame() method returns Frame objects corresponding to frames
acquired from the EGLStream. These Frames are valid until they are released, either explicitly or
implicitly, and contain the frame metadata and image buffer. The interfaces exposed by a Frame
include:

IFrame
Exposes the core metadata (frame number and timestamp) and Image contained in the
frame.

IFrameCaptureMetadata
When connected to an Argus producer, classnameFrames may expose this interface to
provide access to the frame’s corresponding CaptureMetadata

Finally, the IFrame::getImage() method returns an Image object corresponding to the image
buffer(s) included with an EGLStream frame. The format of the data contained in an Image is
identified with a unique ImageFormatID and is described, accessed, and read using the following
interfaces:

IImageBuffers Allows mapping of the image buffers for CPU read access.

IImage2D Provides the dimensions of a 2D image

IImageYUV Describes the plane/channel layout/size of YUV formats.

IImageRGBA Describes the channel layout/size of RGBA formats.

IImageBayer Describes the channel layout/size of Bayer formats.

IImageJPEG Encodes and writes the image to disk as a JPEG file.

2.8.2.2 EGLStream Buffer Formats

According to the EGL KHR stream specification,

“It is the responsibility of the producer to convert the images to a form that the
consumer can consume. The producer may negotiate with the consumer as to what
formats and sizes the consumer is able to consume, but this negotiation (whether it
occurs and how it works) is an implementation detail.”

There is currently no automatic format negotiation between Argus and any consumers, and it
is the responsibility of the application to select an Argus pixel format that is compatible with
the consumer. At this point in time, however, there is also no mechanism within Argus for an
application to query format compatibility with a Consumer before connection. This will be added
sometime before Argus leaves the Beta state, but until then please refer to the implementation
release notes for details on buffer format compatibility.

11

https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream.txt

2.9 Events

Argus uses events as the mechanism to notify applications of driver state changes. Applications
use events by creating and waiting on Argus event queues.

Events are available from any object that exposes an IEventProvider interface. This interface
provides methods to:

• List the supported events with getAvailableEventTypes().

• Create event queues with createEventQueue().

• Wait for the events with waitForEvents().

In this release of Argus, capture sessions are the only event providers.

When creating event queues, applications can request a specific event, or they can provide a list of
events that the queue will contain. Multiple queues can be created for a single object. For example,
an application can create one event queue that will wait for error messages and another that will
wait for capture complete events.

In order to wait for an event, the application calls waitForEvents(). This can be done with one or
more event queues. waitForEvents() will block until at least one event is available; once available,
the corresponding queue will have the event(s) copied to it and waitForEvents() will return. If
there are any outstanding events at the time the application calls waitForEvents(), they will be
copied immediately and the method will return. In the case of multiple queues registered for the
same event, the queue with the lowest index will receive the event.

Once waitForEvents() returns, the application can look at the event objects via getEvent().
The event objects and any data they possess are valid until the event queue is destroyed or the
event queue is again passed to waitForEvents(), at which point the queue is cleared and the
objects invalidated. Event objects expose the IEvent interface, which allows the application to:

• Get the event type with getEventType().

• Get the time of the event in nanoseconds with getTime().

• Get the frame id this event is associated with getFrame().

To get data for a specific event, the client should query the Event object for that event’s type
interface using getInterface(). This will allow the application to get event-specific data such as
the metadata in a capture complete event, or the specific error status in an error event.

2.10 Multiple Clients and Multiple Threads

Argus supports multiple simultaneous client processes through the use of a system-level service
(i.e., nvargus-daemon) that manages camera resources and provides connections to the Argus API
for each client that wishes to connect. Each sensor can be bound to a session in only one process
at a time; that is, no sensor can be simultaneously used by more than one process.

12

Within an Argus application, all captures on a single session must be performed by a single thread,
and waitForIdle() calls must also be made on this thread. (See the CaptureSession section
below for more information on waitForIdle().) Captures on different sessions can be performed
by separate threads, and other threads can be used for non-capture operations such as querying
event queues and setting up new Request objects.

Additional application threads are expected to service events. Since IEventProvider::waitFor
Events() calls are blocking, an application should usually provide one or more additional threads
to wait for events. It is recommended that these event threads only handle event/metadata logic
and that, as mentioned above, a single thread be used to control captures.

3 Argus Objects and Interfaces

3.1 CameraProvider

The CameraProvider object is the core Argus object which provides access to the cameras in
the system along with capture session creation methods. It is the first Argus object that should
be created. The Argus entry point is thus the static method CameraProvider::create() , which
creates and returns the single instance of the CameraProvider object. (A second call to create()
will fail.)

Supported Interfaces:

ICameraProvider
Provides methods to query the CameraDevices available in the system and methods to
create CaptureSession objects utilizing these CameraDevices.

3.2 CameraDevice

The CameraDevice object represents a camera in the system. A CameraDevice object can be a
one-to-one mapping to a physical camera device, or it can be a virtual device that maps to multiple
physical devices that produce a single image.

All of the CameraDevice objects present in the system are enumerated using ICamera
Provider::getCameraDevices(). A CameraDevice object can be used to query the
capabilities of the camera sensor (or other imaging device) it represents, and is provided to
createCaptureSession() to create a CaptureSession that may issue capture requests to that
device. A CameraDevice can be used by only one CaptureSession at any point in time;
attempting to create a new session using a device that is already in use by another session will
fail. Every CameraDevice object supports the ICameraProperties interface, which describes
the capabilities of that device:

13

Table 1: ICameraProperties – continued from previous page

Name Type Description

Table 1: ICameraProperties

Name Type Description

MaxAeRegions uint32 t Maximum number of AeRegions supported

MaxAwbRegions uint32 t Maximum number of AwbRegions supported

SensorModes vector<SensorMode> Sensor modes supported by this device

FocusPositionRange Range<int32 t> Range of valid focuser positions

LensApertureRange Range<float> Range of supported lens apertures

Supported Interfaces:

ICameraProperties
Provides methods to query the properties and capabilities of a CameraDevice. These
include but are not limited to: available sensor modes, focal range, aperture range, and
autocontrol region limits.

3.3 SensorMode

The SensorMode object provides information about a single mode supported by the sensor.
There are two types of valid SensorModes. The first type called basic SensorMode is a
SensorMode that does not have an associated extension. Basic SensorMode types include
Depth, RGB, YUV and Bayer types. The list of valid basic SensorModes is available from
ICameraProperties::getBasicSensorModes(). The second type called extended SensorMode
is a SensorMode that has extensions associated with it. The extended SensorMode supports
some form of Wide Dynamic Range (WDR) technology. The extensions provided by this type of
SensorMode give access to the features of the concerned WDR technology. The full list of valid
SensorModes, both basic and extended, is available from ICameraProperties::getAllSensor
Modes(). Every SensorMode object, whether basic or extended, exposes the ISensorMode
interface, which provides the following information:

Table 2: ISensorMode

Name Type Description

Resolution Size Width and height of sensor mode

ExposureTimeRange Range<uint64 t> Valid range for exposure time in this mode (in
nanoseconds)

FrameDurationRange Range<uint64 t> Valid range for frame duration in this mode (in
nanoseconds)

AnalogGainRange Range<float> Valid range for analog gain in this mode

14

Table 2: ISensorMode – continued from previous page

Name Type Description

InputBitDepth uint32 t The bit depth of the image captured by the image
sensor in the current mode. For example, a wide
dynamic range image sensor capturing 16 bits per
pixel would have an input bit depth of 16.

OutputBitDepth uint32 t The bit depth of the image returned from the image
sensor in the current mode. For example, a wide
dynamic range image sensor capturing 16 bits per
pixel might be connected through a Camera Serial
Interface (CSI-3) which is limited to 12 bits per
pixel. The sensor would have to compress the image
internally and would have an output bit depth not
exceeding 12.

SensorModeType SensorModeType Describes the type of the sensor (Bayer, YUV, etc.)
(Not all sensor mode types are supported in the
current release.)

Supported Interfaces:

ISensorMode
Provides methods to query the properties of a particular sensor mode.

3.4 CaptureSession

The CaptureSession object maintains an active connection to one or more CameraDevices,
and controls the entire capture pipeline from input capture requests to output image streams. Here
is an example of using a CameraDevice to create a CaptureSession:

// Create a capture s e s s i on from the f i r s t r epor t ed dev i c e
CaptureSess ion ∗ c r e a t eS e s s i o n (ICameraProvider∗ prov ide r) {

vector<CameraDevice∗> dev i c e s ;
provider−>getCameraDevices(&dev i c e s) ;
i f (d ev i c e s . s i z e () == 0) // (on ly i f no sensors pre sen t)

return NULL;
CameraDevice∗ dev = dev i c e s [0] ;

Status s t a tu s ;
CaptureSess ion ∗ r e s u l t =

provider−>c r ea teCaptureSes s i on (dev , &s ta tu s) ;
i f (s t a tu s == STATUS UNAVAILABLE)

p r i n t f (” F i r s t dev i c e not a v a i l a b l e \n”) ;
return r e s u l t ;

}

All capture requests start as a Request object and terminate at one or more Stream objects.
All of these objects are created by a CaptureSession, and these objects can only be used by the
session that creates them.

15

As an IEventProvider, a CaptureSession can also create EventQueues and generate various
state, pipeline, or capture-related Events.

Capture requests may be submitted to a CaptureSession by the client on an individual, on-demand
basis. Alternatively, a repeat capture request can be issued such that the CaptureSession will
automatically repeat one or more requests automatically until the client cancels the request. Repeat
captures are controlled by an internal CaptureSession thread, and may result in more than one
capture being active in the pipeline at any point in time – this allows the implementation to
maximize parallelization and resource utilization to increase framerate and overall throughput.

The waitForIdle() call will block until all captures have been completed. Once this call returns,
no more events will be reported in this CaptureSession until new capture requests have been
issued. The caller can specify an optional timeout value for the call; if the underlying camera
pipeline does not become idle within that period of time, the call will return STATUS_TIMEOUT.

Before a CaptureSession can be fully destroyed – and the CameraDevice(s) resources it holds be
released – the capture pipeline must be idle. Thus, CaptureSession::destroy() is a synchronous
call that will block until the capture pipeline is idle, and returning from this call implies that the
CameraDevice(s) the session had used are now available for use by another CaptureSession.
Any overhead related to shutting down the camera device hardware will also be realized before
returning from this call, so it is not guaranteed that destroy() will return quickly, even if the
pipeline is idle.

Supported Interfaces:

ICaptureSession
Provides methods to create Requests, output Streams, and submit capture Requests
to the pipeline.

IEventProvider
See Event Provider

3.5 OutputStreamSettings

An OutputStreamSetting object must be created in order to configure and then create an
OutputStream. When an OutputStreamSettings object is created (with createOutput
StreamSettings()), a StreamType must be provided, which will dictate which interfaces will be
supported by the returned settings object. These settings must then be configured based on the
StreamType that was used:

3.5.1 STREAM TYPE BUFFER

These settings are available through the IBufferOutputStreamSettings interface:

16

Table 3: IBufferOutputStreamSettings

Name Type Description

BufferType BufferType The native buffer type to use with the stream.

SyncType SyncType The sync type to use with the stream (or SYNC TYPE NONE
for no sync).

MetadataEnable bool Whether or not CaptureMetadata should be attached to
Buffer objects that are output by the stream.

3.5.2 STREAM TYPE EGL

These settings are available through the IEGLOutputStreamSettings interface:

Table 4: IOutputStreamSettings

Name Type Description

PixelFormat PixelFormat Pixel format for the buffers in this stream.

Resolution Size Width and height of the buffers in this stream.

EGLDisplay EGLDisplay EGL display that the created stream must belong to.

Mode StreamMode Choice of Mailbox or FIFO mode for this stream. In Mailbox
mode, the most recently-acquired frame is always returned.
In FIFO mode, frames are placed into a queue, and the head
of the queue is returned.

fifoLength uint32 t Length of the frame fifo for this stream. (Ignored for streams
created in Mailbox mode.)

metadataEnable bool Whether or not metadata should be attached to frames that
are output to EGLStream.

For more information on Mailbox and FIFO modes, please refer to the EGL KHR stream specification.

3.6 OutputStream

OutputStream objects are created with ICaptureSession::createOutputStream(), and manage
either a buffer- or EGLStream-based output stream that may be used for outputs from a capture
request. The interfaces that are exposed by an OutputStream are dictated by the StreamType
that was provided when the OutputStreamSettings object was first created.

3.6.1 STREAM TYPE BUFFER

Buffer output streams manage a set of Buffer objects that are created by the client to wrap
native buffer resources. Buffer objects that are created by the OutputStream are Destructable

17

https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream.txt

objects and are used to manage and pass the buffer resources between Argus and the client. This
is accomplished with two main actions:

Acquire
When a Request is submitted that outputs to a buffer output stream, the buffer that
is written to as a result of that request will be moved to an “acquire” queue within the
stream to be acquired by the client using IBufferOutputStream::acquire(). These
completed buffers must be acquired in the order they were written to the stream. If sync
or metadata is enabled on the stream, it will be attached to the Buffer when it is acquired
by the client.

Release
When a client has finished with a Buffer and is ready to reuse it again for another capture
request, the client must “release” the Buffer back to the stream. Doing so will make the
buffer available for use by Argus for a capture request. Note that there is no guarantee
that the first-released Buffer be used first; Argus may select any available buffer for a
capture request.

Supported Interfaces:

IBufferOutputStream
Provides controls for creating, acquiring, and releasing Buffers in the stream.

3.6.2 STREAM TYPE EGL

EGLStream output streams maintain a producer connection to an EGLStream, and output capture
request results directly as EGLStream frames. These frames are then acquired by the EGLStream
consumer using the EGLStream API available to the consumer.

Supported Interfaces:

IEGLOutputStream
Provides methods for synchronizing the EGLStream with the consumer connection, such
as waitUntilConnected() and disconnect().

3.7 BufferSettings

BufferSettings objects are created by OutputStream objects having the STREAM TYPE
BUFFER type, and the interfaces that the buffer settings expose depend on the BufferType
that is being used by the stream. They are used to create Buffer objects.

The only supported buffer type is currently BUFFER TYPE EGL IMAGE, which is configured
using the IEGLImageBufferSettings interface:

Table 5: IEGLImageBufferSettings

Name Type Description

EGLDisplay EGLDisplay EGLDisplay that created the provided EGLImage.

18

Table 5: IEGLImageBufferSettings – continued from previous page

Name Type Description

EGLImage EGLImage The EGLImage that will be wrapped as a sibling by the created
Buffer.

3.8 Buffer

A Buffer object is created and owned by an OutputStream with the STREAM TYPE BUFFER
type. It wraps a native buffer resource, and the interfaces that the buffer exposes depends on the
BufferType and the SyncType of the Buffer.

All Buffers support the IBuffer interface, which provides the getBufferType() and getSyncType().

3.8.1 BUFFER TYPE EGL IMAGE

The only supported buffer type is currently BUFFER TYPE EGL IMAGE. Buffers of this
type expose the IEGLImageBuffer interface, which provides methods to get the EGLImage and
EGLDisplay wrapped by the Buffer.

3.8.2 SYNC TYPE EGL SYNC

The only supported sync type is currently SYNC TYPE EGL SYNC. Buffers using this sync
type expose the IEGLSync interface, which provides methods for getting the acquire sync and
pushing the release sync.

3.9 Request

A Request specifies exactly how a capture should be performed. The major controls are:

• Enabled output streams. Each enabled output stream will receive an output image from the
capture. This image will be scaled as needed to fill the output buffer (which may include
changing the image’s aspect ratio.)

• Per-stream settings. Each output stream has its own settings, including post-processing
controls (such as amount of noise reduction) and a source clip rectangle.

• Source settings. These control the sensor(s) being used for the capture, and include the sensor
mode (primarily the resolution) as well as min/max limits for exposure time, gain, and frame
duration.

• Autocontrol settings. These control the Argus autocontrol algorithms – primarily auto-exposure
(AE) and auto-white-balance (AWB) – and related settings such as the color correction
matrix.

19

Details of these settings are in the Settings section below.

Requests are created via ICaptureSession::createRequest(). The client can create any number
of Requests, and use any of them with each call to ICaptureSession::capture() or any of the
other capture methods. Although Request implements the Destructable interface, and therefore
has an independent lifespan, each Request can be used only with the CaptureSession that
created it.

When creating a Request, the client can specify one parameter: the intent of captures to be done
with this request (of type CaptureIntent) – for example, preview, still, or video. This intent may
change the initial values in the Request.

Here is a simple example of creating and configuring a Request:

// Create r e que s t wi th one stream and +1 EV
Request∗ createRequest (ICaptureSess ion ∗ s e s s , Stream∗ stream) {

const CaptureIntent i n t en t = CAPTURE INTENT PREVIEW;
Request∗ r e s u l t = ses s−>createRequest (i n t en t) ;
IRequest ∗ i r e q = i n t e r f a c e c a s t<IRequest>(r e s u l t) ;
i f (! i r e q)

return NULL;
i r eq−>enableOutputStream (stream) ;
IAutocon t ro lS e t t i ng s ∗ as = i req−>ge tAutocont ro lSe t t i ng s () ;
as−>setExposureCompensation (1 . 0 f) ;
return r e s u l t ;

}

Every time a Request is used in a capture, Argus effectively makes a copy of it, so that the client
can change or delete a Request at any time without affecting any previous captures that used it.

Supported Interfaces:

IRequest
Provides controls for output streams and methods to obtain the remaining interfaces in
this list. Also allows the client to set a uint32 t ClientData value. This value will
be found in the ClientData field of all metadata results for captures made with this
Request, and is intended to help clients keep track of the request used for each block of
metadata reported (especially when using burst captures).

ISourceSettings
(obtained via IRequest::getSourceSettings() Allows the client to read and write sensor
settings, including the sensor resolution and exposure time limits.

IAutocontrolSettings
(obtained via IRequest::getAutocontrolSettings()) Provides access to settings for
auto-exposure and auto-white-balance.

IDenoiseSettings
Provides controls for denoise algorithms.

IEdgeEnhanceSettings
Provides controls for edge enhancement algorithms.

20

3.9.1 Request Settings

A capture Request object contains settings that are provided through a number of different
interfaces:

3.9.1.1 Source Settings

These settings are available through the ISourceSettings interface and configure the source (i.e.,
camera device) for the capture:

Table 6: ISourceSettings

Name Type Description

ExposureTimeRange Range<uint64 t> Minimum and maximum exposure time (in
nanoseconds.) The AE algorithm will strive to keep
exposure time within this range.

FocusPosition int32 t Focuser position in focuser units. (Min and
max values are provided by ICameraProperties::
getFocuserPositionRange().)

FrameDurationRange Range<uint64 t> Minimum and maximum frame duration (in
nanoseconds.) Note that the current SensorMode
may make this range impossible to obey.

GainRange Range<float> Minimum and maximum gain values to be used by
the AE algorithm.

SensorMode SensorMode Sensor mode used for the current capture(s).
This must match one of the modes reported by
ICameraProperties::getAllSensorModes().
Note that changing this from one capture to the
next may incur a significant delay before the second
capture completes.

The minimum and maximum legal values for the ranges above can be found in the SensorMode
object that is being used for this capture. Values outside of the legal ranges will be clamped.

3.9.1.2 Autocontrol Settings

These settings are available through the IAutocontrolSettings interface:

21

Table 7: IAutocontrolSettings

Name Type Description

AeAntibandingMode AeAntibandingMode Adjustment of exposure duration to
avoid banding caused by flickering of
fluorescent light source (off, 50 Hz, 60
Hz, or auto).

AeLock bool If true, AE will maintain the current
exposure value.

AeRegions vector<AcRegion> Image regions considered by the AE
algorithm. An empty list (the default)
means to consider the entire image.

AwbLock bool If true, AWB will maintain the current
white balance gains.

AwbMode AwbMode Auto white balance mode (disabled,
automatic, or any of a number of preset
lighting modes).

AwbRegions vector<AcRegion> Image regions considered by the AWB
algorithm. An empty list (the default)
means to consider the entire image.

WbGains BayerTuple<float> Manual white balance gains.

ColorCorrectionMatrixSize Size Dimensions of the ColorCorrection
Matrix (read-only).

ColorCorrectionMatrix vector<float> Matrix that maps sensor RGB to
linear sRGB. The matrix is stored
in row-major order, and must have
the size width * height, where
width and height are the members of
ColorCorrectionMatrixSize.

ColorCorrectionMatrixEnable bool If true, the ColorCorrectionMatrix
will be used.

ColorSaturation float User-specified absolute color saturation,
in the range [0.0, 2.0]. Will be ignored
if ColorSaturationEnable is false.

ColorSaturationEnable bool If true, ColorSaturation will be used.

ColorSaturationBias float A multiplier for color saturation, in the
range [0.0, 2.0], that will be applied
to either the automatically-generated
value, or the user-specified value in
ColorSaturation.

ExposureCompensation float Exposure compensation, in (EV) stops.

ToneMapCurveSize uint32 t Number of elements in the
ToneMapCurve (read-only).

22

Table 7: IAutocontrolSettings – continued from previous page

Name Type Description

ToneMapCurve vector<float> Tone map curve for one channel
(R, G, or B). Must have size
ToneMapCurveSize.

ToneMapCurveEnable bool If true, use the client-supplied
ToneMapCurve.

3.9.1.3 Stream Settings

These settings are available through the IStreamSettings interface and are provided on a per-stream
basis to configure the output stream(s):

Table 8: IStreamSettings

Name Type Description

SourceClipRect ClipRect Rectangular portion of the sensor image (in normalized
coordinates) that should appear in this output stream.
Contents of this region will be scaled as needed to fill the
output buffer, which may change the aspect ratio.

PostProcessingEnable bool If true, enable post-processing for this stream. Post-
processing currently includes (but is not limited to) denoise.

3.9.1.4 Denoise Settings

These settings are available through the IDenoiseSettings interface:

Table 9: IDenoiseSettings

Name Type Description

DenoiseMode DenoiseMode Noise reduction mode (none, fast, or high quality).

DenoiseStrength float Amount of denoising to be performed; 0.0 is none, 1.0 is
maximum.

3.9.1.5 Edge Enhance Settings

These settings are available through the IEdgeEnhanceSettings interface:

23

Table 10: IEdgeEnhanceSettings – continued from previous page

Name Type Description

Table 10: IEdgeEnhanceSettings

Name Type Description

EdgeEnhanceMode EdgeEnhanceMode Edge enhancement mode (none, fast, or high
quality).

EdgeEnhanceStrength float Amount of edge enhancement to be performed;
0.0 is none, 1.0 is maximum.

3.10 CaptureMetadata

A CaptureMetadata object contains the metadata associated with a single capture. This metadata
includes:

• Many of the settings that were used to generate this capture.

• Current states associated with autocontrol algorithms; for example, AE convergence state.

• Information about the conditions of the capture; for example, total capture time, scene
brightness, and gain values.

The client retrieves this information primarily through the ICaptureMetadata interface, which
consists entirely of methods that return individual pieces of metadata. CaptureMetadata objects
are delivered via CAPTURE_COMPLETE events (see the Event section). When a CAPTURE_COMPLETE

event arrives, the client can obtain the IEventCaptureComplete interface from it, and retrieve
the metadata via getMetadata(), as in this example:

f loat getSceneLux (IEvent∗ i e v t) {
IEventCaptureComplete∗ ccevt =

i n t e r f a c e c a s t<IEventCaptureComplete>(i e v t) ;
i f (! ccevt)

return 0 ; // not a CaptureComplete event !
CaptureMetadata∗ cm = ccevt−>getMetadata () ;
ICaptureMetadata∗ icm = i n t e r f a c e c a s t<ICaptureMetadata) (cm) ;
return icm−>getSceneLux () ;

}

The metadata object will be valid as long as the CAPTURE_COMPLETE event is valid. See the
EventQueue section for details on the lifespan of an Event object.

Metadata can also be acquired from the IArgusCaptureMetadata interface, which can be
exposed from both EGLStream::Frame objects and MetadataContainer objects created directly
from the metadata embedded in an EGLStream frame.

Supported interfaces:

ICaptureMetadata
Provides read-only access to general metadata items.

24

IDenoiseMetadata
Provides read-only access to metadata related to denoising.

IEdgeEnhanceMetadata
Provides read-only access to metadata related to edge enhancement.

Table 11: ICaptureMetadata

Name Type Description

CaptureId uint32 t Unique id for this capture (return value
from capture() methods).

ClientData uint32 t ClientData field from the Request that
was used for this capture.

StreamMetadata InterfaceProvider The per-stream metadata provider for the
specified stream.

BayerHistogram InterfaceProvider Histogram of pixel values coming off
the sensor. This object supports the
IBayerHistogram interface.

RGBHistogram InterfaceProvider Histogram of pixel values after conversion
to RGB space. This object supports the
IRGBHistogram interface.

AeLocked bool Was the AE algorithm locked?

AeRegions vector<AcRegion> Regions of interest used by the AE
algorithm.

AeState AeState State of AE at the time of the
capture (inactive, searching, converged,
or timeout).

FocuserPosition int32 t The position of the focuser in focuser
units.

AwbCct uint32 t Correlated color temperature (in
degrees Kelvin) calculated by the
AWB algorithm.

AwbGains BayerTuple<float> Per-color-channel gains calculated by the
AWB algorithm.

AwbMode AwbMode AWB mode used (disabled, automatic, or
any of a number of preset lighting modes).

AwbRegions vector<AcRegion> Regions of interest used by the AWB
algorithm.

AwbState AwbState State of AWB at the time of the
capture (inactive, searching, converged,
or locked).

AwbWbEstimate vector<float> The camera neutral color point estimate
in native sensor color space.

ColorCorrectionMatrixEnable bool Was the client-supplied ColorCorrection
Matrix used?

25

Table 11: ICaptureMetadata – continued from previous page

Name Type Description

ColorCorrectionMatrix vector<float> The 3x3 color correction matrix.

ColorSaturation float Color saturation used (including biasing).

FrameDuration uint64 t Time from start of frame exposure to
start of the next frame exposure (in
nanoseconds).

IspDigitalGain float Digital gain used.

FrameReadoutTime uint64 t Sensor frame readout time, in
nanoseconds – the time between the
beginning of the first line and the
beginning of the last line.

SceneLux float The estimated brightness of the target
scene (in lux).

SensorAnalogGain float Sensor analog gain used.

SensorExposureTime uint64 t Total sensor exposure time (in
nanoseconds)

SensorSensitivity uint32 t ISO value used.

SensorTimestamp uint64 t Start timestamp for the sensor capture,
in nanoseconds.

ToneMapCurveEnabled bool Was client-supplied ToneMapCurve
used?

ToneMapCurve vector<float> Tone map curve for one channel (R, G, or
B).

26

Table 12: IDenoiseMetadata

Name Type Description

DenoiseMode DenoiseMode Denoise mode used.

DenoiseStrength float Denoise strength used.

Table 13: IEdgeEnhanceMetadata

Name Type Description

EdgeEnhanceMode EdgeEnhanceMode Edge enhancement mode used.

EdgeEnhanceStrength float Edge enhancement strength used.

3.11 Event

Each event implements an IEvent interface but, depending on type, it may also expose additional
interfaces in order to provide additional data.

Supported interfaces:

IEvent
Provides access to the event’s associated frame, time, and type.

An event can have one of the following types:

3.11.1 EVENT TYPE ERROR

Event to report errors encountered during the processing of a capture request. Some errors may
cause the capture to fail to produce valid output; in those cases, a CAPTURE_COMPLETE event will
still be generated, but the status reported through IEventCaptureComplete will indicate an
error.

Supported interfaces:

IEventError
Provides access to the error status.

3.11.2 EVENT TYPE CAPTURE STARTED

Event signifying the start of capture of a given frame. This event exposes only the IEvent interface.

For this event, IEvent::getTime() returns the frame timestamp in nanoseconds. This timestamp
specifies the arrival of the start of the frame into the SoC in the SoC’s time domain.

27

3.11.3 EVENT TYPE CAPTURE COMPLETE

Event signalling the completion of a frame capture including any post-processing. When this event
is generated, all outputs from the capture have already been pushed to their respective consumers.

Supported interfaces:

IEventCaptureComplete
Provides access to the CaptureMetadata and ths status of the capture.

3.12 EventQueue

An event queue is a container for Argus events. A queue is created via IEventProvider::
createEventQueue(). The queue is populated with pending events with a call to
IEventProvider::waitForEvents(). The user can then access the events with IEventQueue::
getNextEvent(), and IEventQueue::getEvent(). An event object is valid until the next time
IEventProvider::waitForEvents() is called on the EventQueue that provided the event, or
until the EventQueue is destroyed, whichever comes first.

Every event queue has an upper bound on the number of events it can contain. That limit is
currently 1,024. Once the event queue contains that number of events, new events will be dropped
until the queue has been emptied. Applications should avoid this by regularly pulling events from
all queues with waitForEvents().

Supported interfaces:

IEventQueue
Provides access to the individual events.

3.13 EventProvider

An event provider is any object that generates events. (There is no dedicated EventProvider
class.) Currently, the only event provider is a CaptureSession.

Event providers support the IEventProvider interface, which is used to create and populate
EventQueues. Any object that implements this interface has to provide at least one event.
The object’s available event types can be seen by calling getAvailableEventTypes(). Once the
event types are known, a EventQueue can be created to listen for those event types by calling
createEventQueue(). EventQueues can be created to listen for any subset of the available
event types. Note that each EventQueue belongs to a single event provider and contains events
from only that provider.

To wait for events, the client calls waitForEvents(). If an EventQueue contains events and
it is passed to waitForEvents(), those events are no longer valid and will be cleared from the
EventQueue. Likewise any Events read from that queue will not be valid after the call to
waitForEvents().

Supported interfaces:

28

IEventProvider
Allows creation of EventQueues and waiting on/retreiving those queues for new events.

29

	Introduction
	Fundamentals
	Types
	Enumerations
	UUIDs
	Data Types
	Base Classes

	Timestamps
	Objects and Interfaces
	Versioning
	Object Lifetimes
	UniqueObj Smart Pointer

	Extensions
	Capture Sessions
	Capture Methods
	Capture Timing and Interactions

	Output Streams
	Buffer Streams
	Buffer Types
	Sync Types

	EGLStreams
	EGLStream Utility Namespace
	EGLStream Buffer Formats

	Events
	Multiple Clients and Multiple Threads

	Argus Objects and Interfaces
	CameraProvider
	CameraDevice
	SensorMode
	CaptureSession
	OutputStreamSettings
	STREAM_TYPE_BUFFER
	STREAM_TYPE_EGL

	OutputStream
	STREAM_TYPE_BUFFER
	STREAM_TYPE_EGL

	BufferSettings
	Buffer
	BUFFER_TYPE_EGL_IMAGE
	SYNC_TYPE_EGL_SYNC

	Request
	Request Settings
	Source Settings
	Autocontrol Settings
	Stream Settings
	Denoise Settings
	Edge Enhance Settings

	CaptureMetadata
	Event
	EVENT_TYPE_ERROR
	EVENT_TYPE_CAPTURE_STARTED
	EVENT_TYPE_CAPTURE_COMPLETE

	EventQueue
	EventProvider

