

March 2007

Loading Structured
Data Efficiently
With CUDA

Lee Howes
sdkfeedback@nvidia.com

March 2007 Page ii of 11

Document Change History

Version Date Responsible Reason for Change
0.1 02/14/2007 Lee Howes Initial release

0.2 02/26/2007 Eric Young Finished final revisions to the document

1.0 03/21/2007 Mark Harris Grammar and readability improvements, first
release version.

March 2007 Page iii of 11

Table of Contents

Table of Contents ...iii

Abstract..1
Introduction..2
Built-in Vector Types ..3
Custom Structures ...4
Implementation Details ..7
Running the Sample ..7
Performance.. Error! Bookmark not defined.
Conclusion ..7

March 2007 Page 1 of 11

 Abstract
CUDA offers the ability to use arbitrary data structures in GPU programs. In order for the
hardware to perform efficient loads and stores of this data, we must specify alignment
details. This simple SDK sample demonstrates how to achieve this.

 Loading structured data efficiently using CUDA

March 2007 Page 2 of 11

 Introduction
G80 hardware is capable of loading multiple 32-bit words into registers with a single

instruction. When programmed correctly, 64-bit and 128-bit data can be filled into 2 and 4
registers respectively.

If input data is not defined properly, the GPU will issue multiple load instructions.
Take a look at this defined structure that has two float variables:

 typedef struct
 {
 float a;
 float b;
 } myfloat2n;

When loading this into an array of structures, the compiler will not automatically use a single
64-bit load instruction. The compiler will issue two 32-bit load instructions in this case.
Figure 1 illustrates how issuing separate loads instructions breaks memory coalescing.

Also note that issuing many small data loads will impact performance significantly.
The reason for this is because the stride between elements is greater than 1. For this case,
the compiler will not be able to issue a sequence of coalesced loads. If data loads can be
done with a single vector instruction and the stride between elements is equal to 1, then the
hardware can perform coalesced loads. A smaller number of large data loads is issued,
effectively achieving greater performance.

Vector loads can be done in CUDA in two ways. One method is to use the built-in
vector types. Another approach is to specify the alignment of custom types which gives the
compiler more information to work with.

Figure 1: Separate loads are unable to coalesce due to the stride
in two separate SIMD instruction executions

 Loading structured data efficiently using CUDA

March 2007 Page 3 of 11

Built-in Vector Types
CUDA defines a number of vector types. Types include char, uchar, short, ushort, int,

uint, long and float for vector sizes ranging from 1 to 4. These types are defined in the header
vector_types.h and used throughout different CUDA SDK samples. The following code
illustrates the use of the float2 type.

Built-in vector types are also standard C structures. They can be used within host C code by
including vector_types.h in your source.

/************************
 * Kernel using built in float2 structure
 * which will use vector loads correctly
 */
__global__ void testKernel_float2(float2 *a, float *b)
{
 float2 tmp = a[threadIdx.x];
 b[threadIdx.x] = tmp.x + tmp.y ;
}

 Loading structured data efficiently using CUDA

March 2007 Page 4 of 11

Custom Structures
In some cases, the build-in vector types may not be suitable for use. Arbitrary

structures could be used instead, but there are some issues to consider. Custom structures
may not be the most optimal way to store data. Data stored as an array of structures (AoS)
is in general the most natural layout. However, with large data structures, efficient loads may
not be possible because the most a single load instruction can perform is 128 bits of data at a
time. An alternative arrangement, structure of arrays (SoA), can help make coalesced
memory accesses easier to achieve. This approach uses a different array for each element of
the structure. In this case, only a single element is needed at any moment in time and each
thread will access a different array element. This ensures that coalescing will happen for
small loads.

There are also cases where AoS is still the most sensible layout. This is the case if
data is written to random memory locations, or if data writes are done by every 1 out of 16
threads. This makes data coalescing impossible. The more data a single write can perform,
the less wasted memory bandwidth there is, and the achievable performance is greater. SoA
is the preferable approach for many cases for data-parallel computations because it groups
related data into a contiguous array. Bank conflicts are also reduced when sequential banks
are read by sequential threads executing a read instruction, whereas non-sequential reads will
end up accessing multiple banks.

The compiler attempts to load a structure using an efficient set of loads as long as it
can determine that the data is aligned on boundaries that suit those data loads. If we are
performing 8 byte loads to load float2 objects, then the data must be aligned to an 8 byte
boundary. This alignment can be applied to custom structures using alignment specifiers.
These are defined in host_defines.h and also accessible though vector_types.h.

 Loading structured data efficiently using CUDA

March 2007 Page 5 of 11

The following code results in two 32-bit loads, resulting in poor performance.

After specifying the alignment of the structure, only a single 64-bit load instruction is
generated.

...
ld.global.f32 $f1, *($r4+0);
ld.global.f32 $f2, *($r4+4);

...

...

ld.global.v2.f32 {$f1,$f2}, *($r4+0);

...

typedef struct __align__(8)
{

float a;
float b;

} myfloat2v;

__global__ void kernelmyfloat2v(myfloat2v *a, float *b)
{

Myfloat2v tmp = a[threadIdx.x];
b[threadIdx.x] = tmp.a + tmp.b ;

}

typedef struct
{

float a;
float b;

} myfloat2n;

__global__ void kernelmyfloat2n(myfloat2n *a, float *b)
{

myfloat2n tmp = a[threadIdx.x];
b[threadIdx.x] = tmp.a + tmp.b;

}

 Loading structured data efficiently using CUDA

March 2007 Page 6 of 11

Structures larger than 16 bytes in size (that is, larger than a float4) can also be aligned. As
loads larger than 128 bits are not possible, it is not necessary to align to more than 16 bytes.
The following load instructions will be split into two 128-bit loads in the PTX code below.

One final point to be aware of is that alignment propagates up through a structure to ensure
that substructures are aligned. The following structure will be aligned to 16 bytes because it
contains a float4 type which happens to be aligned. As a result the structure will also contain
padding to maintain the correct layout, as can be seen from the ptx code below.

ld.global.v2.f32 {$f2,$f1}, *($r4+0);
ld.global.v4.f32 {$f3,$f4,$f5,$f6}, *($r4+16);

typedef struct
{

float a, b;
float4 e;

} BigStructWithFloat4;

ld.global.v4.f32 {$f4,$f3,$f2,$f1}, *($r4+0);
ld.global.v4.f32 {$f6,$f5,$f7,$f8}, *($r4+16);

typedef struct __align__(16)
{

float a, b, c, d;
AlmostFloat2v x;
AlmostFloat2v z;

} BigStruct;

 Loading structured data efficiently using CUDA

March 2007 Page 7 of 11

Implementation Details
The vector_loads source is defined as one *.cu file:

• vector_loads.cu: This file contains all of the code for the host and kernel function

Running the Sample
There is nothing particular to know about running this sample. Just execute it, and it will
print out performance information for different types of vector loads.

Conclusion
The use of alignment specifiers in CUDA allows the compiler to perform multi-

word loads of data. This increases the efficiency of individual loads and also takes advantage
of memory coalescing. By issuing larger sized loads from global memory with 32 or more
bytes, applications can fully utilize the maximum memory bandwidth available on the GPU.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

