With recent demand of more and more computation power, developers and companies have started to look for new ways of speeding up their most crucial algorithms. People have already realized that they can write multi-threaded code on their x86 machines and hopefully get a linear speedup. However what do you do when this speed up is not enough and you need more computation power? Buy more hardware? Buy stronger hardware? People have started to look for the Holy Grail to save them. Along came the GPUs. If you look in the internet you might get the impression that all you need, the developer, is to purchase some sort of a GPU (Graphical Processing Unit), install a certain API library and you’re on your way to management to let them now that the most crucial algorithm of the company is now running 425 times faster than on the CPU. I suggest you think again. 
In this paper I’ll try to give some sort of an introduction as to how to start coding the GPU and what to be aware of. This paper will currently only show the basic stuff to get you started. I’ll use nVidia’s GPUs and nVidia’s excellent API library for the GPU – CUDA.
Next I’ll try to describe how things might go for you at the beginning. Judging from nVidia’s news-groups posts, many people encounter some or most of the problems, misunderstanding or misconceptions detailed below.
Let’s begin. All excited with the amazing possibilities the GPU has to offer, you just want to run ahead and start coding, “ah, no need to read the programming guide” you think to yourself. Please think again. Take the time to read and re-read the excellent programming guide, it will get you quickly through the basics. Many of the initial doubts and questions (as seen in the newsgroups) could be easily answered by the programming guide. Needless to say that the GPU hardware and software paradigm is entirely different from the CPU, therefore a sound understanding of those two aspects is very important prior to approaching the GPUs.
Ok, you’ve kind of read it once and you are now a CUDA beginner-expert. You go and write your first CUDA application (you might even try the real CPU code only in GPU as your first try). You are amazed to find out that all you need basically copy/paste the CPU code into a kernel function, and you’re done. Next thing would be to write the host side of the code.
 No problem, so you write this:
  [Listing1]
  ….
  #define INPUT_SIZE 1000
  unsigned int iTimer = 0;
  float *fInputData = ( float *)malloc(INPUT_SIZE);
  float *fOutputData = (float *)malloc( 1 );
  for ( int j = 0; j < INPUT_SIZE; j++ ) fInputData_h[ j ] = j;

  // Create and time the kernel
  CUT_SAFE_CALL( cutCreateTimer( &iTimer ) );
  CUT_SAFE_CALL( cutResetTimer( iTimer ) );
  [Listing1 – continued]
  CUT_SAFE_CALL( cutStartTimer( iTimer ) );

  // Run the kernel.
  runMyKernel<<< 1, 1 >>>( fInputData, fOutputData );
  // Stop the timer to measure kernel time.
  CUT_SAFE_CALL( cutStopTimer( iTimer ) );
  float fKernelTime = cutGetTimerValue( iTimer );
  printf( “My complex algorithm ran in: [%0.3f]ms\n”, fKernelTime );

Wow you think to yourself and already imagine how much of a raise you’ll get when management hears that you’ve reached a speed up of x1000. If you’ll take a good look at the results you got from the kernel you’ll probably notice that they are not what you’ve expected – probably garbage. Also had you looked at the SDK samples and read the programming guide in depth, you’d know that the code in Listing-1 is faulty. Below you can find why:
1. Kernel invocation is asynchronous, so if you don’t explicitly or implicitly synchronize after your kernel call, the host (CPU) code will just continue and not wait for the completion of the GPU kernel. That’s why you see that the kernel “completed successfully” at almost no time. That also explains the x1000 speedup.
2. You therefore need to synchronize after your kernel (unless you’re using other advanced techniques). As mentioned above this is can be done by either one of the following ways:
a. Explicitly – place a cudaThreadSynchronize call after the kernel invocation. This will block the CPU host code from continuing until your kernel has finished its work.
b. Implicitly – Copy the kernel’s output vector back to the host using a call such as cudaMemcpy.  This will implicitly call cudaThreadSynchronize for you. This is the reason why you’ll see a valid code without the cudaThreadSynchronize but rather with a cudaMemcpy right after the kernel invocation. The synchronization will happen implicitly.
3. You also better check whether the kernel has resulted in an error or finished correctly. This is done by calling cudaGetLastError. Valid kernels will return a value of cudaSuccess.
4. You should also use CUDA’s events to time things and not the cutXXX methods (from cutil). This is because the cutil functionality is not for production and only intended to simplify the SDK code.
5. Synchronization, error management and timing code should probably be wrapped up in some sort of macros in order to increase code readability.



Let’s fix the code above and see what happens.
[Listing2]

float fKernelTime = 0; 
#define INPUT_SIZE 1000
cudaEvent_t iStartTimer, iStopTimer;
// Create the start/stop events.
cudaEventCreate( &iStartTimer );
cudaEventCreate( &iStopTimer );
float *fInputData = ( float *)malloc( INPUT_SIZE );
float *fOutputData = (float *)malloc( 1 );
fOutputData[ 0 ] = 0.0f;
for ( int i = 0; i < INPUT_SIZE; i++ )
	fInputData[ i ] = i;
	
cudaEventRecord( iStartTimer, 0 );	// Start recording
runMyKernel<<< 1, 1 >>>( fInputData, fOutputData );  // Call the kernel
	
// Check for errors prior to the kernel call 
cudaError_t err = cudaGetLastError();
if ( cudaSuccess != err) 
{
printf( "Cuda error: in file '%s' in line %i : %s[%d].\n",
 	__FILE__, __LINE__, cudaGetErrorString( err), err );
	exit( 1 );
}
// Syncronize – i.e. wait for the kernel to realy finish its work.
err = cudaThreadSynchronize();
// Check for errors in the kernel launch or kernel itself.
if ( cudaSuccess != err) 
{
	printf( "Cuda error: in file '%s' in line %i : %s[%d].\n",   
		__FILE__, __LINE__, cudaGetErrorString( err), err );
	exit(1);
}

// Stop the event and show elapsed time.
cudaEventRecord( iStopTimer, 0 );
cudaEventSynchronize( iStopTimer );
cudaEventElapsedTime( &fKernelTime, iStartTimer, iStopTimer );
printf( "My complex algorithm ran in: [%0.3f]ms\n", fKernelTime );

// Destroy the event.
cudaEventDestroy( iStartTimer );
cudaEventDestroy( iStopTimer );





And here’s the output you got:
Cuda error: in file ‘…….cu’ in line XXX: unspecified launch failure[4].

Oops, there goes your dreams down the drain. The kernel didn’t even run. What you’ve measured was not the kernel running your code, but rather a very fast async kernel invocation that failed and your host CPU code didn’t even wait for the kernel to complete. That’s the reason for the amazing performance factor.
Good, lets continue. Why did the kernel fail? If you recall long ago when you read the programming guide, there was some mention about host and device data and how to manage it. For simplicity let us assume there are only two types of data (namely pointers to data):
1. Host data – This is data allocated on the machine’s RAM. You’d allocate and use it just as if you allocated and used memory in regular C/C++ applications.  Use malloc/free to allocate/de-allocate data on the host side.
2. Device data – This is data allocated on the GPU RAM. The C1060, for example, has roughly 4GB that you can use for input/output. Use cudaMalloc/cudaMemcpy/cudaMemset to create and fill the data on the device RAM. Use cudaFree to release the data from the GPU RAM once you don’t need it anymore.
I guess any reasonable algorithm would need both input data and output data. With GPUs you’d usually want to write something like this:
[Listing3]
// This is “regular” C/C++ host code. Code runs on the CPU.
#define INPUT_SIZE 500
……..
// the _h will indicate it’s a HOST pointer residing on the CPU’s RAM.
float *fInputData_h = ( float * )malloc( INPUT_SIZE * sizeof(float) );  
// Now fill the input with data – from TCP/Calculate it/Randomize it/whatever…
for ( int j =0; j < INPUT_SIZE;  j++ ) fInputData_h[ j ] = j;   
// All sort of other “regular” C/C++ code.
…..
// Now you want to calculate stuff on the GPU based on the input in fInputData_h.
// Lets create a DEVICE pointer and copy the data from the host pointer into it.
 // The _d will indicate it’s a DEVICE pointer residing on the GPU’s memory.
float *fInputData_d = NULL;  
cudaMalloc( ( void ** )&( fInputData_d ), INPUT_SIZE * sizeof( float ) );
// Copy the actual data from the host pointer to the device pointer (cudaMemcpyHostToDevice).
cudaMemcpy( fInputData_d, fInputData_h, INPUT_SIZE * sizeof( float ), cudaMemcpyHostToDevice );
// Now let’s allocate the output DEVICE pointer – the kernel will write the result into this array and then
[Listing3 – continued]
// we’ll copy the result from the device back to the host.
float *fOutputData_d = NULL;
cudaMalloc( ( void ** )&( fOutputData_d), 1 * sizeof( float ) );
cudaMemset( fOutputData_d, 0, 1 * sizeof( float ) );

// Do other copies or additional preparations prior to calling the kernel. Mind you that the cudaMemcpy // is synchronous, therefore the kernel will see the data when it will access it.
// Remember that kernel calls are asynchronous so we need to synchronize after the call runMyKernel<<<  1, 1 >>>( fInputData_d, fOutputData_d );
cudaError_t err = cudaThreadSynchronize();   // Sync after the kernel
if ( cudaSuccess != err ) exit( 1 );  	          // Check for errors.
// Now after we made sure that the input/output to the kernel is valid, the kernel ran fine and without
// any errors, we can check for the result from the kernel.
float *fOutputData_h = ( float * )malloc(	 1 * sizeof( float ) );
cudaMemcpy( fOutputData_h, &( fOutputData_d[ 0 ] ), 1 * sizeof( float ), cudaMemcpyDeviceToHost );
printf( “The result from the kernel is [%.3f]\n”, fOutputData_h[ 0 ] );

// Now clean up everything ….
free( fInputData_h ); free( fOutputData_h );
cudaFree( fInputData_d ); cudaFree( fOutputData_d );

Now run the code and see the output.
My complex algorithm ran in: [0.073]ms
The result from the kernel is [0.000] 
Let’s recap what we’ve seen so far. Listing-1 shows a faulty host code where the kernel is being passed host pointers instead of device pointers. It also doesn’t check for errors after the kernel has been called neither does it wait for the asynchronous kernel to properly finish its job. 
Listing-3 already contains a valid host code, after all the issues in Listing-1 has been addressed. The kernel in Listing-3 passes correct device pointers to the kernel, waits till the kernel is done, checks for errors in the kernel and finally copies back the result from the kernel back to the “regular” C/C++ host code.
Although Listing-3 only contains a very simple example of how a host code should look like, I think you’ll find that most of your code will look similar. Of course as you gain more experience you might use the more complex features available for you, more input/output and maybe more than one simple kernel (but rather two, three or more kernels running one after the other, while kernel’s X output is kernel’s X+1 input).
Here are a few more extra common questions and important points to consider when writing proper CUDA applications, with regard to host/device pointers.
1. Always make sure you correctly distinguish between host and device pointers. Passing host pointers to the kernel will crash it.
2. Once you’re done with the host and device pointers – free it. Much like on the CPU, if you don’t free the device pointers your GPU will leak memory.  The next cudaMalloc might fail if your GPU code is leaking.
3. Make sure you reset your input/output device pointers. Just like on the CPU, if you don’t set your device pointers with values it will probably contain garbage (use cudaMemset or cudaMemcpy), even between different code runs.
4. Make sure you double check the sizes of allocations when you allocate device pointers. Common error is allocating, ARRAY_SIZE * sizeof(float *),  for example for an array of floats instead of ARRAY_SIZE * sizeof( float ). All the rules you know about allocating/freeing memory with CPU code, should apply to the GPU code as well.
5. Out of bounds access to device pointers from within the kernel will crash your kernel. Linux users can use Valgrind (http://valgrind.org/) to find those kinds of errors. 
6. No, you can’t allocate dynamic memory from within the kernel (i.e. dynamic global memory). If you find yourself needing this, you either miss something in your CUDA understanding or need to restructure your algorithm to fit the CUDA/GPU architecture.
You can always test your kernel code in enumeration mode (-deviceemu). That can help you in finding out of bounds issues in the kernel, invalid pointers/values etc. Please remember that the enumeration mode works on the CPU (yes NOT on the GPU). The way it works is that instead of opening threads on the GPU the debugger will open the threads on the CPU and the code will run on the CPU in a synchronized way!! That is why you probably won’t be able to identify race-conditions, critical section errors and other synchronization issues using the enumeration mode. Those problems will probably only appear when you move to release mode on the GPU. This is also the reason why the number one question on nVidia’s forums is “This works in eunm mode but not in release…why?”.
nVidia’s SDK samples and the programming guide is great. So does the newsgroups (http://forums.nvidia.com/). Judging from both my experience with CUDA and the amount of repeated questions in the forums, I thought I might give a different, maybe easier, way of how to start coding with CUDA. That said what I described in this paper is only the tip of the iceberg when considering CUDA and GPU. I haven’t touched how to set up a project (in windows and linux), compilation, memory architecture, how to configure the kernel (block and threads wise) and many other aspects of the GPU and CUDA. I didn’t even show the simple kernel I’ve used and talked about the dangerous and misunderstandings people have when starting to code in CUDA with regard to coding the kernel itself. Hardware details are of course also important. Hopefully if time and audience permits, I’ll try to post more papers, trying to explain the issues I’ve mentioned above.
GPU programming is not for the faint hearted. It is still much like coding in assembler. You need to understand what you’re doing, how things work and why they work that way. You need to understand a whole lot of things, not related to GPUs, in order to write CUDA code. 
You must fully understand CPU threads, how they work, how they are synced. You need a strong grasp of critical sections, race conditions, locks and data locality. Any textbook about writing multi-thread applications for the CPU is a must, prior to trying to write a GPU program.
Just think of your poor x86 machine with a maximum of 4 cores and now think of the GPU with 250 such cores, with thousands of threads flying around. This is not something to be taken lightly.
Oh and the best advice, I think, is don’t make any assumptions, double check yourself and don’t jump into conclusions so quickly. Especially if those conclusions are that the CUDA API is buggy or the hardware is faulty. Obviously that can happen; most likely you’re doing something wrong 
Oh and please read the programming guide again.
I’d appreciate your input on that paper and any comments/insights/further ideas are more then welcomed. 
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