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Abstrakt

Jak je zndmo, zaokrouhlovaci chyby a nepfesné feseni vnitinich dloh maji vliv na
numerické chovdani iteraénich metod v aritmetice s kone¢nou pfesnosti; obecné
snizuji jejich rychlost konvergence a ovliviiuji konecnou pfesnost spocteného
feSeni. V préci se zabyvame analyzou maximalni dosazitelné piesnosti nékterych
itera¢nich metod pro feSeni soustav linearnich algebraickych rovnic.

Dizertace je rozdélena na dveé ¢asti. Prvni z nich obsahuje analyzu limitni pfesnosti
metod krylovovskych podprostorti pro reseni rozsdhlych tloh sedlovych bodd.
Uvazujeme dva typy segregovanych metod: metodu redukce na Schurtiv doplnék
a metodu projekce na nulovy prostor mimodiagonélniho bloku. Ukazuje se, Ze
vybér vzorce pro zpétnou substituci ma vliv na maximalni dosazitelnou pfesnost
priblizného feseni spo¢teného v aritmetice s kone¢nou piesnosti.

Druhd ¢ast je vénovana analyze numerického chovani nékterych metod mini-
malnich rezidui, které jsou matematicky ekvivalentni metodé zobecnénych mi-
nimadlnich rezidui GMRES. Srovndvame dva hlavni postupy: jeden, kde pfiblizné
feSeni je vypocteno ze soustav s horni trojihelnikovou matici, a jeden, kde
je priblizné feSeni upravovano pomoci jednoduchého rekurentniho vzorce. Uka-
zuje se, %Ze vybér baze ma vliv na numerické chovani vysledné implementace.
Zatimco metody Simpler GMRES a ORTHODIR jsou méné stabilni diky spatné
podminénosti zvolené baze, baze zkonstruovana z rezidui muze byt dobfe podmi-
nénd, jestlize jsou normy rezidui dostate¢né klesajici. Tyto vysledky vedou k nové
implementaci, kterd je podminéné zpétné stabilni, a v jistém smyslu i vysvétluji
experimentalné ovéfeny fakt, ze metoda GCR (ORTHOMIN) déva v praktickych
aplikacich velmi pfesné aproximace feSeni.

Kli¢ova slova. Rozsadhlé linedrni soustavy, metody krylovovskych podprostori,
tlohy sedlového bodu, metoda redukce na Schurtv doplnék, metoda projekce na
nulovy prostor mimodiagonélniho bloku, metody minimdlnich rezidui, numericka
stabilita, analyza zaokrouhlovacich chyb.
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Abstract

It is known that inexact solution of inner systems and rounding errors affect
the numerical behavior of iterative methods in finite precision arithmetic. In
particular, they slow down their convergence rate and have an effect on the
ultimate accuracy of the computed solution. Here we focus on the analysis of the
maximum attainable accuracy of several iterative methods for solving systems of
linear algebraic equations.

The thesis is divided into two parts. The first part is devoted to the analy-
sis of Krylov subspace solvers applied to the large-scale saddle point problems.
Two main representatives of segregated solution approaches are analyzed: the
Schur complement reduction method and the null-space projection method. We
show that the choice of the back-substitution formula can considerably influence
the maximum attainable accuracy of approximate solutions computed in finite
precision arithmetic.

In the second part we analyze numerical behavior of several minimum residual
methods, which are mathematically equivalent to the GMRES method. Two
main approaches are compared: the approach, which computes the approximate
solution from an upper triangular system, and the approach where the approx-
imate solutions are updated with a simple recursion formula. We show that a
different choice of the basis can significantly influence the numerical behavior
of resulting implementation. While Simpler GMRES and ORTHODIR are less
stable due to ill-conditioning of chosen basis, the residual basis remains well-
conditioned when we have a reasonable residual norm decrease. These results
lead to a new implementation, which is conditionally backward stable, and in
a sense explain an experimentally observed fact that the GCR (ORTHOMIN)
method delivers in practical computations very accurate approximate solutions
when it converges fast enough without stagnation.



Key words. large-scale linear systems, Krylov subspace methods, saddle point
problems, Schur complement reduction, null-space projection method, minimum
residual methods, numerical stability, rounding error analysis.
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AnHoTanusa

UsBecTHO, 9TO HEaKKypaTHbIE PEIIEHUS BHYTPEHHNX IPobAeM M OIIMOKH OKPYT-
AEHUS OTPa’KAIOTCS Ha BEIYUCAUTEABHOM IIOBEAEHWIO UTEPAITMOHHBIX METOAOB.
OHU KOHKPETHO 3aTOPMO3AT MX CKOPOCTH CXOAUMOCTH ¥ OKa3BIBAIOT BAUSHUE
Ha (pUHANBHYIO aKKYPAaTHOCTH BBIYMCAEHHOTO PelleHus. MBI 3peCh 3aHMMaeMCs
aHAAM30M MaKCHMaAbHON AOCTM)KHMOM aKKYPAaTHOCTY HEKOTOPBIX HTEPAIMOH-
HBIX METOAOB AAS PEIIEHWS CUCTEM AMHENHBIX aarebpawmdecKUX ypaBHEHU.

Ora pmMccepTalnysa pasjpeAeHa Ha ABe JacTW. [lepBas 3aHMMAaeTCT aHAAM3OM AU-
MUTHOM aKKypPaTHOCTHA METOAOB IIPOCTPAHCTB KphEIAOBa AAS PEIIEHUS HOABIIIX
CUCTEM CEAEABHBIX TodeK. MEI paccMaTpuBaeM ABa THUIIBI CEMPETAIIMOHHBIX METO-
AOB: MeTOAOM IIpeobpasoBaHUI Ha AomoaHeHWe [Ilypa ¥ MeTOAOM IPOEKIUM Ha
SIAPO HeAMaroHaAbHOTO Haoka. MBI yka3eiBaeM, 9TO BEIOOP HOPMYAB 06paTHON
IIOACTAHOBKY OTPa’kaeTcsi Ha MaKCHMaAbHOM AOCTMKUMOY aKKyPaTHOCTH IIPH-
OAM3UTENABPHOT'O PEIIEHNS BEIYUCAEHHOTO B apUMMETHKE C KOHEYHOM TOYHOCTHIO.

Bropas 4acTh COAEPKUT aHAAU3 BEIYUCAUTEABHOI'O IIOBEAEHUS HECKOABKUAX Me-
TOAOB MUHVMAABHBIX HEBSI30K, KOTOPblE MATEMATUYECKY SKBUBAAEHTHBIE METO-
Ay «GMRES». Mp1 cpaBHEBaeM ABa I'AaBHBIE METOABI: OAVH, KOTOPEIM OIIpeae-
ASIET IPUOAMKEHHOE DELIEHNE U3 CUCTEMBI C BEPXHEH TPeyrOAbHON MaTPUION,
¥ OAMH, TAe IPUOAMIKEHHOE PEIIeHrEe KOPPEKTUPOBAHHOE C IIOMOIIBI0 IPOCTOR
PeKypPPeHTHON dhopMyAbl. MBI yKa3biBaeM, 9T0 BbIOOp 6a3bl oTpa’kaeTcs: Ha BbI-
YICAUTEABHOM IIOBEAEHUY KOHEYHOrO MeToAA. [Ioka Merops! «Simpler GMRES»
u «ORTHODIR» menee cTabuabHBIE 32 CUeT IIAOXO 0OyCAOBAEHHOM Ha3wl, Haza
HEBSI30K MOXXET BBITH XOPOIIO 06YCAOBAEHHAST, ECAX HOPMBL HEBSI30K AOCTATOYHO
CHU>KAIOTCSI. DTU PE3YABTATHl BEAYT K HOBOMY METOAY, KOTOPBIH yCAOBHO 0bpar-
HO CTabUABHEBIN, X B OIIPEAEAEHHOM CMEICAE OOBSICHSIIOT SKCIEPUMEHTAABHO YAO-
croBepeHHBIH dakT, uTo MeTop «GCRy (Takxe uwsBecrHbll Kak «ORTHOMIN»)
DA€T B IIPAKTUYECKUX AIIIAUKAIIASIX OYeHb aKKyPaTHHIE AIlllIPOKCUMAIIAY PeLIe-
HUSI.



KitoueBbie ciioBa. Hoablme AMHEWHbIE YPaBHEHUS, METOABI IIOAIIPOCTPAHCTB
Kpsinosa, Merop mpeobpasoBanus Ha pomoaHeHme [llypa, MeTop IPOEKIIMM Ha
SIAPO HEAMAroHaABHOI'O OAOKA, METOABI MUHUMAABHBIX HEBSI30K, BEIIMCAUTEAD-
Has CTabMABHOCTD, aHAAW3 OIIMOOK OKPYTAEHUA.
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CHAPTER 1

Introduction

Consider a system of linear algebraic equations in the form
Az = b, (1.1)

where A is an N x N nonsingular matrix and b is a right-hand side vector. Usually
we assume that A is large and sparse as it is, e.g., when A is a discrete repre-
sentation of some partial differential operator. We are looking for the solution of
(1.1) or for its sufficiently accurate approximation.

The methods for solving (1.1) are usually classified as direct and iterative. Di-
rect methods are mostly based on the successive elimination of unknowns. They
factorize the system matrix (with suitably ordered rows or columns), e.g., into
the product of lower and upper triangular matrices as in the Gaussian elimina-
tion, or to the product of an orthogonal and a triangular matrix as in the QR
factorization. The solution of (1.1) can be then found by solving systems with
these factors. In general, direct methods are well suited for dense and moderately
large systems. However, when solving a large sparse system, the number of newly
created non-zero elements in both factors can heavily affect the computational
time and storage requirements. In addition, even though direct methods deliver
in theory the exact solution, there is no need for such an accuracy in practice
due to uncertain data or discretization errors.

Therefore, iterative methods became very popular when solving sparse systems.
An iterative method for the solution of (1.1) generates a sequence of approx-
imations zp so that they ideally converge to the exact solution. The system
matrix need not to be explicitly stored. In each iteration we need only to per-
form a matrix-vector multiplication. Moreover, the approximations converge
often monotonously (or almost monotonously) in some fixed norm and so we can
stop the iteration process when the approximation is accurate enough. However,
the convergence rate of iterative methods can be slow in general (depending on
properties of the system) and thus hybrid techniques combining the iterative and

1



2 CHAPTER 1. INTRODUCTION

direct approach, such as preconditioned iterations, are widely used to make the
process more efficient.

In general, a solution method (no matter if a direct or iterative one) can be
interpreted as a solution of a sequence of subproblems which are simpler to solve.
In direct methods we can identify following subproblems: the factorization of
the system matrix and the solution of systems with computed factors. In each
step of an iterative method, we multiply a vector by the system matrix and
optionally solve the system with a preconditioner which can be also regarded
as the subproblems solved repeatedly in the iteration loop. E.g., the matrix-
vector multiplication can involve the solution of an inner system as in the Schur
complement reduction method which we will discuss later.

1. The state of the art

From now on we restrict ourselves to iterative methods. In practice, the compu-
tations are affected by errors. They are never performed exactly due to rounding
errors and some of them are done inexactly with a prescribed level of accuracy,
especially when computations with the working accuracy could be a waste of
time and resources. E.g., matrix-vector products may involve a solution of inner
systems, which (being large and sparse) can be solved inexactly with another
iterative method. Preconditioning can be also applied through some iterative
process. Usually, a method is called inexact if some involved subproblems are
solved only approximately even though we assume exact arithmetic. Rounding
errors can also considerably affect the behavior of iterative methods. Since the
behavior of inexact iterative methods and “exact” methods in finite precision
arithmetic is similar, we will not strictly distinguish between the sources of er-
rors and we will treat them commonly in a unified approach in the following
discussion.

When an inexactness is taken into account, there are several important questions
which need to be answered. In the following we give a brief overview of the state
of art in this field (including results in finite precision arithmetic). Generally the
inexactness introduced in an iterative method has two main effects:

e The errors caused by inexact computations are propagated throughout
the iterative process. Ideally the error propagation should be restrained
so that the local errors are not magnified. There is a limit in the ac-
curacy which cannot be exceeded and it is usually called the maximum
attainable (or limiting) accuracy.
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e The convergence of an inexact iterative method can be delayed with
respect to the convergence of the same method, where all computations
are performed exactly. We may ask how many additional iterations
should be performed such that the same accuracy is attained as in the
ideal (exact) case.

In this thesis we focus on the limiting accuracy of inexact iterative methods. The
effects of inexact matrix-vector multiplications in iterative methods (also referred
as relaxed methods) on the maximum attainable accuracy were studied simulta-
neously by van den Eshof and Sleijpen [97], and by Simoncini and Szyld [90].
Their analysis explains the experimental results of Bourass and Frayssé [18] (the
report with an extensive experimental basis was published in 2000) who proposed
a relaxation strategy for the accuracy of the computed matrix-vector product.
They have shown that to achieve the prescribed accuracy of the computed solu-
tion we need to compute the matrix-vector product with the accuracy (measured
by the backward error) inversely proportional to the actual residual norm. The
papers [97, 90] provide the theoretical support for this strategy further devel-
oped in [98]. This topic is closely related to the flexible preconditioning, see,
e.g., [11, 43, 76, 90, 39]. Here we try to adopt the backward error analysis,
widely used in the study of rounding errors, and we analyze the effects of in-
exact computations on the limiting accuracy of certain iterative methods. The
computations are performed in the presence of rounding errors while solutions
to certain subproblems are done with more relaxed accuracy. We want to know
how the inexactness of these inner systems together with the errors caused by
roundoff affect the behavior of the considered algorithms. It appears that some
measures of the accuracy are ultimately on the level proportional to the unit
roundoff, while other measures depend on the accuracy of inner systems.

The problem of numerical stability of classical iterative methods was addressed
in several papers. The first analyzes carried out by Golub [40] and Lynn [69]
provide statistical and non-statistical results for the second order Richardson
and SOR method. The statistical error analysis of classical iterative methods
was also performed by Arioli and Romani [5] clarifying the relation between the
conditioning of the preconditioned system matrix and the convergence rate of
the iterative method. In [56] Higham and Knight give the forward and backward
error analysis of a general one-step stationary method. Their analysis among
other things shows that the accuracy of the computed solution strongly depends
on the oscillations of norms of the iterates which is a common observation not
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only in the case of classical iterative methods. Moreover, even though the con-
vergence is driven by the spectral radius of the iteration matrix, the limiting
accuracy depends rather on the norm of its powers which can be arbitrarily large
in the early stage of the iterative process. This was observed by Hammarling and
Wilkinson [53]. The stability of classical iterative methods was also analyzed by
Wozniakovski in [107, 108]. He proved the forward stability of classical meth-
ods like Jacobi, Richardson, Gauss-Seidel and SOR (for symmetric systems with
the Property A) and Chebyshev method (for symmetric positive definite sys-
tems). However, the Chebyshev method appeared to be not normwise backward
stable. In [41] Golub and Overton discuss the convergence rate of the second
order Richardson and Chebyshev method. They consider the inexact solution
of inner systems with uniformly bounded relative residuals. The accuracy of
the computed solution in the Chebyshev method is further analyzed by Giladi,
Golub and Keller [37] who show the optimality of the uniform tolerance used in
[41]. When the system is solved by the classical iterative method in each step
we must solve a simpler system induced by the splitting of the system matrix.
However, these systems can be also solved iteratively. These methods, referred
to as two-stage methods, were addressed, e.g., in [73, 64, 36].

One of the most important result in the study of Krylov subspace methods is due
to Paige [77]. He provides the analysis of the behavior of the symmetric Lanczos
algorithm [65] in the presence of rounding errors. This algorithm is closely related
to the conjugate gradient method by Hestenes and Stiefel [54]. It was first studied
by WozZniakowski [109] and Bollen [17]. WozZniakowski shows that this method
converges in finite precision arithmetic at least linearly with the convergence rate
similar to the steepest descent method. However, his analysis does not reflect the
reality very well, since the convergence of the conjugate gradient method cannot
be characterized locally but its actual behavior depends on the whole iteration
process; see, e.g., [99, 68] and the references therein. The new insight into this
problem was brought by Greenbaum [45] and further developed together with
Strakos [95, 49]. It appears that the finite precision Lanczos process as well as
the finite precision conjugate gradient method behave as their exact counterparts
applied to the matrix of (possibly much) larger dimension with the eigenvalues
clustered near the eigenvalues of the original matrix. This issue was further
discussed by Notay in [75].

The analysis of limiting accuracy of some classes of iterative methods can be per-
formed in rather general setting without referring to any particular method. The
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methods based on the coupled two-term recurrences were analyzed by Green-
baum in [46, 47]. The papers focus mainly on the conjugate gradient method
but the analysis holds for a larger set of methods. In particular, the results of
Greenbaum show that the highly irregular convergence behavior (expressed by
the oscillations of norms of iterates) observed in the case of non-optimal iterative
methods (such as BiCG [35] or CGS [93]) can have an unfavorable effect on the
limiting accuracy of the computed solution. A similar phenomenon is mentioned
also by van der Vorst in [100], where the loss of accuracy is explained by oscilla-
tions of residual norms. On the other hand, such oscilations do not occur (or can
be a priori bounded) in the case of optimal methods such as conjugate gradients
and conjugate residuals [94] applied to symmetric positive definite problems, or
in the case of residual minimizing methods (Orthodir [110], Orthomin [102],
GCR [29]) for general nonsymmetric systems. The numerical stability of various
(equivalent) methods using short recurrences was further studied by Gutknecht
and Strako$ in [52] and by Sleijpen, van der Vorst and Modersitzki in [92]. In
[51] Gutknecht and Rozloznik discuss the effect of residual smoothing on the
limiting accuracy.

Finally we survey the results for the finite precision behavior of nonsymmetric
Krylov subspace methods with the full-term recurrences such as GMRES [88].
The Householder implementation of the underlying Arnoldi process [6] is quite
straightforward to analyze, see the paper by DrkoSova, Greenbaum, Rozloznik
and Strakos [27], and by Arioli and Fassino [4]. This is due to the almost exact
orthogonality of the computed Krylov subspace basis. However, when we use the
cheaper modified Gram-Schmidt implementation, the orthogonality is gradually
lost during the iteration process. The loss of orthogonality however goes hand
in hand with the decrease of the backward error of the actual computed solution
as observed by Greenbaum, Rozloznik and Strakos in [48] and further analyzed
by Paige, Rozloznik and Strakos in [80, 78]. For more details see [67] and the
references therein.

2. Organization of the thesis

This thesis is divided into two main parts and is organized as follows. Chapter
3, which is based on the papers [61, 60], is devoted to the analysis of inexact
methods for solving saddle point problems of the form

(5 2) () =)
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A brief overview on saddle point problems is presented in Chapter 2. We ana-
lyze two segregated methods based on the transformation of the whole indefinite
problem to a reduced system with more preferable properties (smaller dimension,
positive (semi)definiteness). The reduced system is solved by a suitable itera-
tive method giving the approximations to one of the block components of the
solution vector (z or y). The remaining component is computed via some back-
substitution formula. We consider three different but mathematically equivalent
formulas. In each iteration we have to solve either a nonsingular system with A,
or a full rank least squares problem with B. Since such systems are not usually
solved exactly, we assume here that they are solved with a prescribed backward
error and study the effect on the maximum attainable accuracy of the solution
method together with the effects of rounding errors. Such inexact methods have
been also considered in many papers but most of them analyzed the delay of con-
vergence; see the references in Chapter 3. Here we provide a qualitative analysis
of the maximum attainable accuracy of the computed solution measured by true
residuals in the saddle point system, by true residuals in reduced systems and
by forward errors of the computed solutions. In addition, we show which residu-
als (and how) can be affected by the possibly irregular convergence behavior in
the case of the nonsymmetric block A. The theoretical results are illustrated on
numerical experiments.

Chapter 4, based on the paper [62], is devoted to the analysis of several residual
minimizing Krylov subspace methods, which are mathematically equivalent to
the GMRES method [88]. In contrast to GMRES, they, in the nth iteration,
build an orthonormal basis of AK,(A,ro) instead of KCp(A,70): Kn(A4, 7o) de-
notes the nth Krylov subspace generated by the matrix A and the vector rg.
Two approaches are compared: the approach, which computes the approximate
solution from an upper triangular system, and the approach, where the approx-
imate solutions are updated step by step with a simple recursion formula. We
consider a general basis to generate the orthonormal basis of AKC,(A,rg), and
it appears that, while Simpler GMRES and ORTHODIR are less stable due to
ill-conditioning of the chosen basis, the residual basis can be well-conditioned,
when we have a reasonable residual norm decrease. These results lead to a new
implementation, which is conditionally backward stable, and to the well known
GCR (ORTHOMIN) method, and in a sense explain an experimentally observed
fact that GCR (ORTHOMIN) delivers very accurate approximate approximate
solutions in practical applications. The theoretical results are illustrated on nu-
merical experiments.
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CHAPTER 2
Saddle point problems

The solution of large-scale systems in the saddle point form attracted a lot of
attention in recent years. They appear in a large variety of applications and
many solution methods were developed so far. The next chapter is devoted
to the numerical stability analysis of certain iterative methods for saddle point
systems and, before we start, we give a short introduction into this field. For an
exhaustive overview we refer to the paper by Benzi, Golub and Liesen [14].

We consider the large sparse system of linear algebraic equations in the block

@)= (& 2)()=(0) .

where A € R»*", B € R®™ and C € R™*™. The solution and right-hand side
vectors are partitioned consistently with respect to the partitioning of the system
matrix. Let A and B are nonzero matrices and furthermore we assume that the
right-hand side is always chosen so that the system is consistent.

The properties of blocks A, B and C may vary depending on the application. In
the following section we mention several important examples of problems leading
to a saddle point system. Note that the system (2.1) has a symmetric block
structure which can be relaxed when solving so called generalized saddle point
problems. However, we do not consider this case here.

1. Applications leading to saddle point problems

Saddle point problems arise in a wide selection of problems of computational
science and engineering. When A is symmetric positive definite, B has a full
column rank and C' = 0, we have the most common version of the saddle point

system
(5 2)()-() e

9
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which appears, e.g., when solving elliptic second order partial differential equa-
tions by the mixed finite element method [24] or quadratic programming prob-
lems with linear constraints [38, 74]. The component z of the solution vector
(z,y) of (2.2) is the solution of the constrained minimization problem
. 1

min J(u) = ZufAu — fTu st. BTu=g. (2.3)

uER™ 2
The corresponding Lagrangian is defined as

L(u,v) = J(u) + (BTu — g)Tv Vu e R", Vv e R™,

where v is the vector of Lagrange multipliers. The vector (z,y) is the saddle
point of L,
L(z,v) < L(z,y) < L(w,y).
The nonsymmetric block A appears, e.g., when solving linearized Navier-Stokes
equation via the sequence of Stokes and Oseen problems. If, in the mixed finite
elements, the approximation spaces do not fulfill the LBB condition, the stabi-
lization should be applied leading to the nonzero symetric positive semidefinite
matrix C [24, 32].
Another important application of saddle point systems is the solution of linear
least squares problems. Let B be an n X m matrix of a full column rank and
consider
find y s.t. ||f — By|| = min ||f — Bo||.
veR™

It is well-known [16, 42] that the solution of this problem is unique and it is
characterized by the orthogonality condition z = f — By L R(B) = N(BT)+ for
the residual vector z (where R(B) and N(BT) denotes the range and null-space
of the matrix B and B7, respectively). Hence we have z + By = f, BTz = 0

leading to the system
I B\ (z\ (f
BT o)\y) \o/)-

In general, the system of the form (2.2) (with g = 0) corresponds to the weighted
least squares problem, where A~!l-norm is minimized instead of the Euclidean
one (when A is symmetric positive definite).

2. Properties of saddle point matrices

Here we briefly recall the basic properties of saddle point matrices and relate
their spectral and nonsingularity properties with respect to the properties of
particular blocks. We restrict ourselves to the symmetric case but some results
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can be extended to a more general setting. For a more complete discussion, see
[14].

THEOREM 2.1. Let A be a symmetric positive definite matriz with eigenval-
ues contained in the interval [), X] and let B be of a full column rank with
singular values contained in [0,7) with A >0 and ¢ > 0 and C is symmetric
positive semidefinite. Then

e A has n positive and m negative eigenvalues;
e 1f C =0, the eigenvalues of A are localized as follows:

AMA)CcI uIt,

1 / 1 /< [~
2 2
+_ 1 /- —2 _o
ProoF. The saddle point matrix A4 can be factorized as follows

Ao 1 0y (A 0 I A'B
—\BTat 1)\0 -BTA'B-Cc)\o I )

The first statement immediately follows from the Sylvester’s law of inertia [57],
since the Schur complement —BTA~!'B — C is symmetric negative definite. For
the proof of the second statement, see [85]. O

where

I-

The matrix A is indefinite, since it has both positive and negative eigenvalues.
Solving highly indefinite matrices (with n &~ m) can lead to the slow convergence
when using Krylov subspace methods like MINRES [79], see [34]. A simple
modification of the system matrix in the form

. (A B
Az(_BT C)’

as observed, e.g., in [13, 34|, leads to a nonsingular system with a spectrum
moved to the right half-plane of the complex plane but, however, for the price of
losing the symmetry.

The nonsingularity conditions are summarized in the following theorem (see [13]).
THEOREM 2.2. Let A be symmetric nonnegative real (that is, (A + AT) is

positive semudefinite), B has a full column rank and let C be symmetric
positive semidefinite. Then
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e if A is nonsingular, then N(A) N N(BT) =0;
o if N(3(A+ AT))N N(BT) =0, then A is nonsingular.

Here 0 represents the null subspace of R™. In particular, if A s symmetric
positive semidefinite, then A is nonsingular if and only if N(A)NN(BT) = 0.

3. Solution methods

Solution methods for systems of the form (2.1) can be divided into two categories
called coupled and segregated methods. Coupled methods solve the system (2.1)
as a whole and therefore compute both components z and y of the solution vector
at once. They can be both direct, e.g., using LDL” factorization with 1 x 1 and
2 x 2 pivots, and iterative, e.g., using MINRES [79] in the symmetric case. On
the other hand, segregated methods transform the system (2.1) of the dimension
n+m to a reduced system of a smaller dimension solving either for the component
z or y. The remaining component is then found by the back-substitution into
(2.1). The reduced systems can be also solved either directly or iteratively. They
can be hard to compute explicitly, so the iterative approach is more preferable
in many cases. Moreover, besides the smaller dimension, the reduced systems
can be easier to solve than the whole saddle point system (e.g., the reduced
system can be positive (semi)definite). Sometimes the border between coupled
and segregated approaches is not sharp, since coupled methods can be treated as
segregated and vice versa. Here we review two main representatives of segregated
approaches which will be analyzed in the next chapter: the Schur complement
reduction method and the null-space projection method. We will not discuss
other issues related to the topic and solution methods, especially preconditioning
of saddle point problems; see [14] for more information.

3.1. The Schur complement reduction method. Assume A is symmet-
ric positive definite, B has a full column rank and C is symmetric positive semi-
definite. Then Theorem 2.2 implies that the system (2.1) has a unique solution.
It can be regarded as two matrix-vector equations in the form

Az +By=f, Bfz—Cy=y. (2.4)

Since A is nonsingular, we can to eliminate z from the first equation, i.e., ¢ can
be expressed as

z = A~1(f - By), (2.5)
and substituted into the second equation. Then we obtain the system

Sy=BTA'f—g, S=BTA'B+C (2.6)
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with the Schur complement matrix S (which is, more precisely, the negative
Schur complement of A in A). The solution of an (n + m)-dimensional indefinite
problem (2.1) is thus transformed to the solution of two systems of orders m and
n with symmetric positive definite matrices. First, the system (2.6) is solved
for y. It is not always preferable to compute S directly, since, even though A is
sparse, S need not to be. Sometimes the elimination process can be performed
such that the sparsity is preserved [71]. When (2.6) is solved iteratively, we need
to compute the product with S which involves the solution of a system with
the matrix A. The iterative method produces the sequence of approximations
yr (k = 0,1,2,...) converging ideally to y. When the vector y or an iterate
yx 1s available, the corresponding approximation to z can be computed by the
substitution into (2.5).

One of the most popular methods for solving saddle point systems based on
the Schur complement reduction is the Uzawa method [7]. The algorithm is as
follows: choose yg, then for £ =0,1,2,... do

solve Azypi1 = f — Byy,
Yer1 = Yk — (g — BTzki1 + Cyi).

Here o > 0 is a relaxation parameter. Hence we can write the iteration in the

form
A 0 Te+1 _ 0 -B Tk f
BT —a™I)\yey1)  \0 —a'I-C) \w * g’

The direct computation shows that the iteration matrix of the associated sta-
tionary method is

A 0o \ /0 -B (0 —AlB
BT —o'I 0 —alI-C) \0 I—-aS)"

Thus the Uzawa method converges if and only if the spectral radius of I — aS
is strictly less than one. It is easy to see that the Uzawa method is based on
the Schur complement method, since it is nothing but the Richardson iteration
applied to the Schur complement system (2.6). On the other hand, the Uzawa
method can be regarded as a block Gauss-Seidel method (with a regularization
in the block (2,2)) applied to the saddle point system (2.1).

3.2. The null-space projection method. The Schur complement reduc-
tion relies on the effective solution of systems with the matrix A. Sometimes the
application of A~! is hard to compute in which case the null-space projection
method can be the method of choice. Assume here that A is symmetric positive
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definite on N(B7), B has a full column rank and C = 0. The system (2.2) is
thus by Theorem 2.2 uniquely solvable and can be expressed as two matrix-vector
equations

Az +By=f, BTz=g. (2.7)
Let zo be a particular solution of the second equation and Z € R**("~™) be a
matrix containing a basis of the null-space of BT. Every such solution lies in the
affine space zg +N(BT) and hence has the form ¢z = 2o+ Zzz, where zz € R*™™
are the coordinates of ¢ — zg in the null-space basis Z. Substitution into the first
equation of (2.4) and premultiplying by Z7 gives the symmetric positive definite
system

ZTAZzz = Z7(f — Azo) (2.8)
that is, the reduced system of the order n — m for the components of z — zg
in the basis of N(BT). The system Z7AZ can be solved directly or iteratively.
When we have Z explicitly available (e.g., by the sparse QR factorization) both
approaches can be applied. However, when using an iterative method, it can be
implemented so that the matrix Z is kept only implicitly [44]. We can view the
solution of (2.8) as the solution of a projected system

(I - MA(I - )z, = (I - ), (2.9)
where z; = Zzz and II is the orthogonal projector onto R(B). The solution
component y can be then found via the solution of the least squares problem

|f - Az — Byl = min |f - Az — Bul|. (2.10)
When (2.8) or (2.9) is solved iteratively producing the sequence of approximations

zr (k=0,1,2,...), solving (2.10) gives an approximation y; to y with z replaced
by zg.



CHAPTER 3

Limiting accuracy of segregated saddle point
solvers

We want to solve a saddle point system which is in fact the symmetric indefinite
system with 2 x 2 block structure

(1;17’ JOB) @ - <£> ’ (3.1)

where the diagonal n x n block A is symmetric positive definite and the n x m
off-diagonal block B has full column rank. Saddle point problems have recently
attracted a lot of attention and appear to be a time-critical component in the
solution of large-scale problems in many applications of computational science
and engineering. A large amount of work has been devoted to a wide selection
of solution techniques varying from the fully direct approach, through the use of
iterative stationary or Krylov subspace methods, up to the combination of di-
rect and iterative techniques including preconditioned iterative schemes. For an
excellent survey on applications, methods, and results on numerical solution of
saddle point problems, we refer to [14] and numerous references therein (relevant
references will be given later in the text). Significantly less attention, however,
has been paid so far to the numerical stability aspects. Here we concentrate on
the numerical behavior of schemes which compute separately the unknown vec-
tors z and y: one of them is first obtained from a reduced system of a smaller
dimension, and, once it has been computed, the other unknown is obtained by
back-substitution solving exactly or inexactly another reduced problem. The
main representatives of such a segregated approach are the Schur complement
reduction method and the null-space projection method. We analyze such algo-
rithms which can be interpreted as iterations for the reduced system but compute
the approximate solutions z; and yx to both unknown vectors z and y simulta-
neously.

15
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The Schur complement reduction method uses the block factorization in the form

A B\ _ I 0\ /(A B
BT o) \BTA! 1/\0 —-BTA'B)’

where the matrix —BTA~'B is the Schur complement of A in (3.1). Such de-
composition leads to solving the resulting block triangular system

(I(L)1 _BTi—1B> (;) = (_BTJ:q_lf> ) (3.2)

which is nothing but a block Gaussian elimination applied to the original system
(3.1). The block triangular system (3.2) is solved by computing the unknown y
from the symmetric positive definite Schur complement system

BTA™'By =BTA™'f (3.3)

of order m and then by computing the unknown z from a system of order n with
the symmetric positive definite matrix A. This approach leads to the explicit
formula for the unknown vector ¢ = A~!(f — By). The null-space projection
method is based on the projection of the first block equation in (3.1) onto the null-
space N(BT) and onto its orthogonal complement R(B), respectively. According
to the second block equation of (3.1) the unknown z belongs to N(BT) and
therefore we get the block triangular system

(U - “;*ﬁi{ 1) BgB> (‘;) = ((IE;TI}V> , (3.4)

where I1 = B(BTB) BT denotes the orthogonal projector onto R(B). This
triangular system is solved by forward substitution, where we first compute the
unknown z from the projected system

(I -MA(I — M)z = (I —II)f (3.5)

of order n with the symmetric positive semi-definite matrix (I — II)A(I — II).
Once it has been computed, the unknown y is obtained as y = BT(f — Az) by
solving the least squares problem

If - Az — Byl = min |f - Az - Bl (3.6)
where BT denotes the Moore—Penrose pseudoinverse of B. The success of algo-

rithms for solving the block triangular systems (3.2) or (3.4) depends on the
availability of good approximations to the inverse of the block A or to the
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pseudoinverse of B, respectively. More precisely, one looks for a cheap ap-
proximate solution to the inner systems with the matrix A and/or to the as-
sociated least squares problems with the matrix B. Numerous inexact schemes
have been used and analyzed, see, e.g., the analysis of inexact Uzawa algorithms
[31, 22, 23, 12, 112], inexact null-space methods [89, 105, 111], multilevel or
multigrid methods [21, 20, 111], domain decomposition methods [19], two-stage
iterative processes [73, 36] or inner-outer iterations [43]. These papers contain
mainly the analysis of a convergence delay caused by the inexact solution of inner
systems or least squares problems.

We concentrate on the question of what is the best accuracy we can get from
inexact schemes solving either (3.2) or (3.4) when implemented in finite precision
arithmetic. The fact that the inner solution tolerance strongly influences the
accuracy of computed iterates is known and was studied in several contexts. The
general framework for understanding inexact Krylov subspace methods has been
developed in [90] and [97]. Assuming exact arithmetic, Simoncini and Szyld [90]
and van den Eshof and Sleijpen [97] investigated the effect of an approximately
computed matrix-vector product in every iteration on the ultimate accuracy of
several solvers and explained the success of relaxation strategies for the inner
accuracy tolerance from [18, 19, 39]. The developed theory strongly exploits
the particular properties of an iterative method used for solving the associated
system. In the context of saddle point problems, this requires a deep analysis of
the outer iteration scheme for solving the reduced Schur complement or projected
system (in particular, we refer to [90, Section 8]).

The effects of rounding errors in the Schur complement reduction method and
the null-space projection method have been studied, e.g., in [2, 3, 26, 70], where
the maximum attainable accuracy of computed approximate solutions by means
of residuals and errors is estimated depending on the user tolerance specified in
the outer iteration. We analyze the influence of the inexact solution of inner
systems/least squares problems on the same quantities. Our approach is based
on a standard backward analysis which allows us to take into account both the
inexactness of the inner iteration loops as well as the accompanying rounding
errors that occur in finite precision arithmetic.

The theory developed for the outer iteration process is similar to the analysis of
Greenbaum in [47, 46] who estimated the gap between the true and recursively
updated residual for a general class of iterative methods using coupled two-term
recursions. The difference here is that every computed approximate solution of
inner problem is interpreted as an exact solution of a perturbed problem induced
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by the actual stopping criterion, while the theory of [47] considered only the
rounding errors associated with a fixed matrix-vector multiplication. In contrast
to the theory of inexact Krylov methods [90, 97], the bounds for the true residual
in the outer iteration loop are obtained without specifying the solver used for
solving the Schur complement or the projected Hessian system. It appears that
the maximum attainable accuracy level in the outer process is mainly given by
the inexactness of solving the inner problems and it is not further magnified by
the associated rounding errors. These results are thus similar to ones which can
be obtained in exact arithmetic.

The situation is different when looking at the numerical behavior of residuals
associated with the original saddle point system, which describe how accurately
the block equations (3.1) are satisfied. It is shown that the attainable accu-
racy of computed approximate solutions then depends significantly on the back-
substitution formula used for computing the remaining unknowns. Our results
show that, independent of the fact that the inner systems are solved inexactly,
some back-substitution schemes lead ultimately to residuals on the roundoff unit
level. Indeed, our results confirm that depending which back-substitution for-
mula is used the computed iterates may satisfy either the first or the second
block equation to the working accuracy. We believe that such results cannot
be obtained using the exact arithmetic considerations and are of importance in
applications requiring accurate approximations (see e.g. [44, 38, 24]). On the
other hand, we agree that in many applications the saddle point system comes
from a discretization of certain partial differential equations and much lower ac-
curacy is sufficient. In any case, we give a theoretical explanation for the behavior
which was probably observed or is already implicitly known. However, we have
not found any explicit references to this issue. The implementations that we
point out as optimal are actually those which are widely used and suggested in
applications.

The chapter is organized as follows. Sections 1 and 2 are devoted to the round-
ing error analysis of the Schur complement reduction method and the null-space
projection method, respectively. Each section is divided into five subsections.
In subsections 1.1 and 2.1 we analyze the influence of inexact solution of inner
systems or least squares on the maximum attainable accuracy in the outer iter-
ation process for solving (3.2) or (3.4), and we estimate the ultimate norms of
the true residuals —BTA™'f + BTA !By and (I — II)f — (I — I)A(] — I1)Zk.
In the consequent three subsections of Sections 1 and 2, we give bounds for the
ultimate norm of the true residuals f — AZ, — By, and —B7Z. As we will see
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in subsections 1.2-1.4 and 2.2-2.4, the limiting accuracy of these residuals may
significantly differ for various back-substitution formulas for computing z or yx,
respectively. Subsections 1.5 and 2.5 contain forward analysis with the bounds
for the errors z — T and y — 3. Throughout this chapter our theoretical results
are illustrated on the model example taken from [83]: we put n = 100, m = 20,
and

A = tridiag(1,4,1) € R®™*", B =rand(n,m), f=rand(n,1l).

The spectrum of A and singular values of B lie in the interval [2.001,5.999] and
[2.173,7.170], respectively. Therefore the conditioning of A or B does not play an
important role in our experiments. For further discussion, we refer to subsections
1.5 and 2.5.

For distinction, we denote quantities computed in finite precision arithmetic by
bars. We assume that the usual rules of a well-designed floating-point arith-
metic hold, and use occasionally the notation fi(-) for a computed result of an
expression. The roundoff unit is denoted by u. In particular, for a matrix-vector
multiplication the bound [|fi(Az) — Az|| < O(u)||A||||z|| is used and ||z|| denotes
the 2-norm of the vector z; for a general matrix A we make use of the spec-
tral norm ||A|| and the corresponding condition number x(A) = ||Al|/Tmin(4),
where 0,,in(A) is the minimal singular value of A. For a symmetric positive
definite matrix A, ||z||a denotes the A-norm of the vector z. Finally, we apply
the O-notation when suitable.

1. Schur complement reduction method

In this section we will discuss algorithms which compute simultaneously approx-
imations zx and yx to the unknowns z and y and ideally fulfill the first block
equation of (3.1)

Azy + By = f. (3.7)

Our goal here is not to survey all existing schemes based on (3.7) but to ana-
lyze the numerical behavior of three implementations which use different back-
substitution formulas for computing the approximate solution zx. More precisely,
without specifying any particular method, we assume that we have computed the

approximate solution yxy; and the residual vector r,(:i)l using the recursions

k1 = Yk + axpl’), (3.8)
r,(cy+)1 = r,(cy) + akBTAlepgcy) (3.9)
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with réy) = —BTA1(f — Byp). We will distinguish between the following three
mathematically equivalent formulas:

Tpt1 =Tk + ak(—A‘priy)), (3.10)
zri1 = A (f — Bygya), (3.11)
Trt1 = T + A_l(f — Az — Byk+1). (3.12)

The resulting schemes are summarized in Figure 3.1. These schemes have been
used and studied in the context of many applications, including various clas-
sical Uzawa algorithms, two-level pressure correction approach, or inner-outer
iteration method for solving (3.1); see, e.g., the schemes with (3.10) in [82, 10],
(3.11) in [31], or (3.12) in [22, 23, 12, 112], respectively. Because the solves with
matrix A in formulas (3.10)—(3.12) are expensive, these systems are in practice
solved only approximately. Our analysis is based on the assumption that every
solution of a symmetric positive definite system with the matrix A is replaced by
an approximate solution produced by an arbitrary method. The resulting vector
is then interpreted as an exact solution of the system with the same right-hand
side vector but with a perturbed matrix A + AA. We always require that the
relative norm of the perturbation is bounded as ||AA|| < 7||4||, where 7 repre-
sents a backward error associated with the computed solution vector. We will
always assume that the perturbation A A does not exceed the limitation given by
the distance of A to the nearest singular matrix and put restriction in the form
Tk(A) < 1. It follows then from the standard perturbation analysis (see, e.g.,
[55, 16]) that

TK(A)

la+a4)t—at <=

WHA? IE

Note that if 7 = O(u), then we have a backward stable method for solving
the positive definite system with A. In our numerical experiments, we solve
the systems with A inexactly using the conjugate gradient method or with the
Cholesky factorization as indicated by the notation 7 = O(u).

1.1. The attainable accuracy in the Schur complement system. In
this subsection we look at the ultimate accuracy in the outer iteration process
by means of the true residual —BTA~'f + BTA~'Bf,. It is clear that if we
perturb the Schur complement system —BTA !By = —BTA'f to —BT(A +
AA)"'Bj=—-BTA'f, where ||[AA|| < 7||A||, then the residual associated with
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outer iteration
Yo, solve Azg = f — Byo, r((,y) = —BTz,

fork=0,1,2,...

Yr+1 = Yr + Otkpgcy)

inner iteration / back-substitution

solve Apgf) = —Bpgcy)

A) zgy =+ akp,(f)

B) solve Azgy1 = f — Byg+1
C) solve Auy = f — Azx — BYkt1, Tkl = Tk + Uk

A = P - BT

FicurRe 3.1. Schur complement reduction: Three different
schemes for computing the approximate solution zy;; (called
in the text the updated approximate solution (A), the approx-
imate solution computed by a direct substitution (B), and the
approximate solution computed by a corrected direct substitu-
tion (C), respectively).

¢ can be bounded as

_ . TK(A) _ N
|- BTA'f+ BTA™'By|| < - IA=HIIBI19]l- (3.13)

TK(A)
We see from (3.13) that there is a limitation to the accuracy of the residual
obtained directly from ¢ and its bound is proportional to 7. Note that these con-
siderations were made assuming exact arithmetic. The effects of rounding errors
on the same quantity have been studied by Greenbaum [47], who considered a
general class of methods for solving the fixed system of linear equations using
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two-term recursions given by (3.8) and (3.9). Using a similar approach we can
extend these results and formulate the following theorem.

THEOREM 3.1. The gap between the true residual —BT A~ f+ BT A~'By, and

the updated residual F,(cy) can be bounded as

| — BTA™'f + BTA By, — 7l¥||

[(2k + 1)7+O(u)]x(A)
- 1—71k(A)

IAHIIBIU A+ 1B Yx),

where Yy is defined as a mazimum norm over all computed approzimate
solutions Yy, = max;—o,.. k|||
Proor. The initial residual ng) is computed as F((,y) = —f(BTzy), where

(A+ AAo)Zo = I(f — Byo), ||AAo|| < 7||A|]. It is easy to see that the statement

holds for £k = 0. The computed approximate solution ¢x1 and the residual F,(c?i)l

satisfy

Ye+1 = U + &kﬁiy) + Aygy1,

2 (v) (3.14)
1Ayl < ullFkll + (2u + u”)l|axpy |,
O, =5 _ 8 BTHE 1 A, -
1arZL]l < ull7? | + 0w Bllllaxsi” I,
where ﬁ;f') is the exact solution of the perturbed system
(A+8A)PY = ~A(BEY), |04k < 7]lAll- (3.16)

Multiplying (3.14) by BT A~1B, substituting (3.16) into the recurrence (3.15),
and subtracting these two equations we get the recurrence
~BTA™'f + BTA T Byjyy, — 7, = —BTA™ f + BTA™' By — 7))
~ap(BTpY) + BTAT'BpY)) + BTA'BAy;, — ArlY.
The norm of the vector &kﬁfcy) can be bounded as ||6zk;5§cy)|| < |Gl + 1Tkl +
[|[Ayg+1]||. This bound in combination with (3.14) gives ||Ayg+1|] < O(u)Yit1
and ||6zk;5§cy)|| < 3Y%1 which also implies

3l A~

_ (=) < >
ool < 1 L1817 (317)
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Using (3.16), the bound on ||6¢k;5§cy) ||, and some elementary manipulation, we can
estimate the term &k(BTﬁEf) + BTA_lBﬁEGy))

law(BT5) + BTA BpY)|| < |laxBY[(A + AAy) ™ — A A(BEY)||
[7 + O(u)]x(4)

= pT g—1 sV _ gy <
HlawB” A~ A(BA) ~ BRI < T

A HIBI Vi1

Considering (3.15), (3.17), and the induction assumption on the gap between

—BTA'f+BTA-'Bf and F,(cy) (similar to the one used in [47]), we obtain the

(v)

bound for the error vector Ar in the form

k+1
O(u)k(A) | 4- >
Arl) || < 222847 1B B||Y,
a2l < TR AT BN + 18I Fesn)
which proves the statement of the theorem. O

It is a well-known fact that the residual F,(cy) computed recursively via (3.9) usually

converges far below O(u). Using this assumption we can obtain from the estimate

for the gap —BTA ' f+ BTA !By, — F,(cy) the estimate for the maximum attain-
able accuracy of the true residual —BT A~ f + BT A~ By}, itself. Summarizing,
while the updated residual f,(cy) converges to zero the true residual stagnates at
the level proportional to 7. This is also illustrated in our numerical example,
where the Schur complement system —BTA~'By = —BTA~!f is solved using
the steepest descent method with the initial approximation yg set to zero. In Fig-

ure 3.2 we show the relative norms of the true residual —-BTA~'f + BT A~'By,
(solid lines) and the updated residual F,(cy) (dashed lines).

Similar to Greenbaum [47], we have shown that the gap between the true and
updated residual is proportional to the maximum norm of approximate solu-
tions computed during the whole iteration process. Since the Schur complement
system is symmetric negative definite, the norm of the error or residual con-
verges monotonically for the most iterative methods like the steepest descent,
the conjugate gradient, conjugate residual method, or other error/residual min-
imizing methods or at least becomes orders of magnitude smaller than initial
error /residual without exceeding this limit. In such cases, the quantity Y; does
not play an important role in the bound, and it can usually be replaced by ||yo|| or
a small multiple of ||y||. The situation is more complicated when A is nonsingular
and nonsymmetric; see [60].
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As we already noted, the main difference with respect to the analysis of Green-
baum is that the floating-point multiplication with the fixed A~! is replaced by
the step-dependent inexact solution of the system with A such that it can be
interpreted as the exact application of the matrix (A + AAg) !, where the per-
turbation matrix AAg changes at every step k. This concept is very similar to
the notion of inexact Krylov subspace methods (see [90] or [97]), which, on the
other hand, does not take into account the effects of rounding errors. The theory
of Greenbaum [47] could be directly applied only if we have at each iteration
|8(BTA=1Bz) — BT A~1Bz|| < O(u)||A~Y|||B||?||z]|. Since in our idealized case
i(BTA~1Bz) = BT (A + AAx) !Bz with ||AAg|| < 7||Al|, we have only

T g1 T p—1 TK(A)
— < " 7
|A(B* A™"Bz) — B* A" " Bz|| 1 (4)

IA™H[IIBI2 |-

This bound could be improved if we make a restriction and use a variable toler-
ance for inner systems. If we require that every inner system is solved so that
the relative residual of its computed solution needs the tolerance 7, then every
inexact application of the matrix BT A~ B would satisfy the inequality

18(BT A~ Bz) — BT A~ Bz|| < 7l|A7* ||| B||*||]!. (3.18)

Then the whole outer process (3.8) and (3.9) together with (3.18) could be in-
terpreted as a floating-point iteration with the roundoff unit equal to 7. The
computation in this “extended” arithmetic would lead to

_ RpT 21 T -1, — 7)) < O(r)
|-B*A"f+B"A "By — 7 ||_1—TK,(A)

A thorough rounding analysis of the block LU factorization has been given in
[26] and further developed in the saddle point context in [70]. The approach
was quite converse to the one used here. It is assumed that all inner systems
are solved in a backward stable way and the accuracy of computed approximate
solutions is estimated in terms of the user prescribed tolerance for the outer Schur
complement system. Roughly speaking, the higher stopping tolerance 7 leads to
the higher attainable accuracy of the true residuals f — AZy — By and —BT zy.
This level is magnified by the quantities that play a similar role as the growth
factor in the Gaussian elimination with partial pivoting (see, e.g., [55]). On the
other hand, the parameter n giving the threshold for the backward error cannot
be infinitely small. Theorem 3.1 actually gives its lower bound. Dividing the
right-hand side by ||A || B||?||7|| we end up with n > O(u)x(A)/(1—O(u)x(4)).

IAHNBIP (vl + Yi).
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In the following we will estimate the residuals f — AZy — By and —BTz,. We
will show that these quantities depend on the actual implementation of the back-
substitution formula for z; and distinguish between three schemes (3.10), (3.11)
and (3.12). No matter how we compute the approximations Z; and g it holds
that

—BTA'f+ BTA 'Bg, = —BTz;, — BTA (f — A%y — B, (3.19)

which gives the relation between the residual —BTA~'f + BT A~'B7, in the
Schur complement system and the residuals f — AZ, — By and — BTz, associated
with the saddle point system (3.1). According to Theorem 3.1, || - BTA7!f +
BT A~'Byy|| is ultimately O(7). Then it is clear from (3.19) that both f —
Az, — By, and —B7TZ;, cannot be proportional to the roundoff unit . We will
show that, depending on the chosen back-substitution scheme, we can ensure
either that f — A%y — By = O(7) with —BTZ; = O(u) (scheme A (3.10)), or
that f — AZy — Byx = O(u) with —BTzj; = O(7) (scheme C (3.12)), while the
most straightforward scheme B (3.11) leads to both f — Azy — Byx = O(7) and
—BT.’fk = O(T)

1.2. Scheme A: The updated approximate solution. In this subsec-
tion we analyze the generic update (3.10). It is clear that this scheme requires
only one system solve with A per iteration. Indeed, we compute only the di-

rection vector p,(f) = —Aipr(ky), which appears in the recurrence r,(cy_gl =
r,(cy) — akBTpgf) anyway. As we will see, in finite precision arithmetic this algo-

rithm guarantees that —B7Z;, will ultimately reach O(u). This happens despite
the fact that the systems with the matrix block A are computed inexactly with
the parameter 7 frequently much larger than O(u).

THEOREM 3.2. The true residual f — AZy — By satisfies the bound
If = Az — Bl < O(u)(IfI| + 1 BIIY&) + [(k + 1)7 + O(u)][| Al Xk.  (3.20)

,(cy) can be estimated as

The gap between the residuals —BTzZ) and 7
| = BT, — 72| < O)|A™[IBIIIFI + 1Al Xk + (| BI V),

where X 1s now defined as a mazimum norm over all computed approzimate
solutions X = max;—q,__ ||Z:]|-
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FIGURE 3.2. Schur complement reduction method: The relative
norms of the true residual —B7 A~ f+ BT A~1g (solid lines) and

the updated residual F,(cy) (dashed lines) — the updated solution
scheme (3.10).

Proor. The computed approximate solution Zy; satisfies

Tpy1 =T + &kﬁ;(f) + Azgq, (3.21)

|82k 1]l < ullae]l + (2 + u) @7 .
Substituting recurrently (3.21) and (3.14) into the residual

f— AZxi1 — Biry1 = f — A%y, — By — ax (AP + BpY)

— AA:Ek+1 — BAyk+1,
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F1GURE 3.3. Schur complement reduction method: The norms
of the true residual f — AZyx — By — the updated solution scheme
(3.10).

we obtain the following bound:

|f — AZy, — Bgi|| < ||f — AZo — Byoll

+>° (lla(4ss™ + BE)l| + Al Azssall + 1Bl 1Ay ) -

i

kS
—

I
<}

Here we, in fact, reformulate the main result of Greenbaum [47, Theorem 2.2]
and heavily use the fact that the vectors ﬁ,(f) satisfy the perturbed system (3.16).

From Theorem 3.1 we have bounds ||Ayg1]| < O(u)Yky1 and ||dkﬁ,(cy)|| < 3Yi1
which also imply the bound (3.17). Using all of these results we get

(AP + B < llalf(Boy) — BAY Il + 1A Akll|axs |l
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FIGURE 3.4. Schur complement reduction method: The rela-
tive norms of the true residual —B7Z (solid lines) and the re-

cursively computed residual F,(cy) (dashed lines) — the updated
solution scheme (3.10).

Further we use ||Azg 1| < O(u)Xgy1 and ||6(k;5§f)|| < 3Xy41. Summarizing, we
get the first result. The gap between —BTZ,,; and F,(ggl is equal to

—BTZ4q — Fl(cy+)1 = -BTg; - Fl(cy) — BT Azyyy — Arl(cy+)1

and it leads to the expansion containing just the local errors Az;;;, Ay;y; and
the initial gap —BT %o — Féy)
k—1

k—1
~BTz ~ 7Y = ~BTzo — 7Y =Y BTAziyy — Y ArY),.
1=0 1=0
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F1GURE 3.5. Schur complement reduction method: The norms
of the true residual f — AZ, — By, — the corrected direct substi-
tution scheme (3.12).

Taking norms, considering the bounds on ||Azgi1||, ||AYk+1]|, (3.15), and the
relation ng) = —fi(BT%), we get the second result. O

COROLLARY 3.3. The true residual f — ATy — BYy satisfies the bound

_ _ O(1)xk(4) -
— Az, — B < —= B||Y%).
I ~ A3 = Byl < T S5 (1511 + 1BIIFe)
The gap between the residuals —BTzZ; and F,(cy) can be estimated as

_ ~ O(u)k(A _ =
|- B~ 7l < A B 171+ 18192

—T1K(A)
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FIGURE 3.6. Schur complement reduction method: The rela-
tive norms of the true residual —BTZ; (solid lines) and the

recursively computed residual F,(cy) (dashed lines) — the direct
substitution scheme (3.11).

As we will see in the next subsection, the bound for the gap —BTzZ; — F,(cy) is

considerably better than for the scheme (3.11). In contrast to (3.24), it does not
depend on 7. Provided that F,(cy) converges to zero, the true residual —B7Z; will
stagnate at the level proportional to u and the second block equation of (3.1)
will be satisfied to working accuracy.

Figs. 3.3 and 3.4 show the norms of the true residual f — AZy — Byx and
—BTz;, (solid lines), respectively, including the norms of the updated residual
F,(cy) (dashed lines). The numerical results are in good agreement with Theorem
3.2. The residual f — AZx — By is growing slightly due to the accumulation of
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F1GURE 3.7. Schur complement reduction method: The rela-
tive error norms ||z — Zg||a/||z — Zol|la (solid lines) and ||y —
YkllBra-18/||y — Yol|Bra-15 (dashed lines) — the updated solu-
tion scheme (3.10).

errors in inner systems Ap(,f) = —Bp,(cy) but it essentially remains on the level pro-
portional to 7. The residual —BTZ; ultimately stagnates at O(u). The formula
(3.10) is suitable whenever the second block equation of (3.1) must be satisfied
accurately, no matter how small or big the inner tolerance 7 is.

1.3. Scheme B: The approximate solution computed by a direct
substitution. In this subsection we assume that z; is computed by the direct
substitution (3.11). The computed Z; then satisfies the equality

(A+ AAg)Zr = (f — Byr), ||AAk]| < T[|A]]. (3.22)
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The perturbation matrices AAyg are different from those defined in Subsection
1.1, but for simplicity we will keep the same notation. In the following we will

show that the residual F,(cy) is a good approximation for the residual —B7T z,

provided that they are above the level given by the bound for —BTz; — F,(cy).
This quantity is now, however, proportional to 7.
THEOREM 3.4. The true residual f — AZyp — By satisfies the bound

If — AZe — Bkl < O(u)([If]] + IBIlllF«]) + Tl AllllZ - (3.23)

The gap between the residuals —BT %, and F,(cy)

| — BTz — 7| < O)| A BII(I £ + ||B]| %)
+[(k + 3)7 + O(w)]&(A)||B|| X,

can be bounded as follows:

(3.24)

where Xy, is defined as Xy = maxi—o,._x_14l|Zol, ||Z&]l, [|&@p ||}

Proor. The first result follows from (3.22) and the relation for the true
residual
f— AZx — Byx = f — By — (f — BYx) — AArZk.

(v)
k

For the gap between —BTZ; and 7,°’ we have the identity

—BTz,—#¥) = —BTA'f+ BTA 'By, — 7\¥) + BTA ' AAwZ
+BYAYA(f — Bix) — (f — B)]-
The statement of Theorem 3.1 together with (3.25) gives the second result (3.24).

(3.25)

O
COROLLARY 3.5. The true residual f — ATy — By satisfies the bound
_ _ O(71)x(4) _
— Az, — B < ———= B .
I — 4% ~ Bl < 7 G (151 + Bl 3l
The gap between the residuals —BT %, and F,(cy) can be bounded as follows
T ~(y) O(1)&(A) |\ 4-1 v
- - < —-—Z Yi). .
| - B2 — 72 < T s 1A MBI + 1B (3.26)

Indeed while the residual F,(cy) converges ultimately below O(u), the residual
—BT%;, will remain proportional to 7. The norm of f — AZy; — B is uncon-
ditionally bounded by the term proportional to 7 dominating other terms in
(3.23).
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Figure 3.6 shows the norms of —B7Tzj, (solid lines) and F,(cy) (dashed lines). The
residual f — AZy — By behaves similarly to that of the scheme (3.10) shown in
plot 3.3. The residual f — ATy — By remains almost constant since it is nothing
but the residual of the system Azyp = f — By solved in each iteration with the
uniform accuracy.

1.4. Scheme C: The approximate solution computed with a cor-
rected direct substitution. The third back-substitution formula (3.12) can
be derived by a correction of the scheme (3.11) and requires two system solves
with A. In this subsection we show that its numerical behavior is very similar
to the behavior of classical nonstationary iterative methods described and ana-
lyzed by Higham [55]. We prove that under certain conditions the true residual
f — Az, — By ultimately converges to the level proportional to u, which is
significantly smaller than those for the previous two schemes.

THEOREM 3.6. Assuming for sufficiently large k with ||gx+1— x| < O(u)Yeyi1,
there exists a step kg such that the true residual f — AZp — Byr ts bounded
by

If — Az — Bell < O(u)(If]| + | Al Xk + | BI|¥x) (3.27)

(v)
k

or att steps kK > Ko. e gap between —B Ty and T can be estimated as
Il steps k > ko. Th bet BT d be estimated

follows:
| = BT, — 72| < O()|A~ || BII(If]| + || BII¥x)
+ [(k +3)7 + O(uw)]k(A) || B|| Xk

The quantity Xy, 1s here defined as Xy = max;—o,_x—1{/|Zoll, [|Zxl, ||c'ti;3£m)||}.

Proor. The computed approximate solution Zx1 satisfies
Tetr = T + Uk + AZxta, [[Azka|l < ul[Zxl] + l|xl), (3.28)
where the vector @ is the exact solution of the system
(A + AAgir)ue = A(f — ATk — Birt1), ||AAk+1l| < 7|4 (3:29)
The residual f — AZg41 — BYk+1 can be expressed using (3.28) and (3.29) as
f—AZpy1 — Bigp1 = AAp iUy — AAzry
+8(f — ATk — Byk+1) — (f — AZk — BYkt1) (3.30)
= Grt1(f — ATy, — Byx) — Gk+lB(07kZ71(cy)) + k41,
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where Ggy, = AAk+1(A + AAk+1)71 and hgi1 = (I + Gk+1)[ﬁ(f — Az —
Bgkt+1) — (f — AZx, — BYr41)] — AAzp1 — Grp1 BAygy1. From a recursive use
of the formula (3.30) we obtain

f— AZx — By, = G- G1(f — AZo — Byo)
k—1
- Z Gr--- Gi+2(Gi+1BC_¥i15£y) — hit1).
i=0
Taking norms, using the relation ||c'ti;35y)|| < |Fix1 — Gill + 1| Ayir1]] and [|AA;]] <

7||A|| we obtain the uniform bound ||G;|| < T7&(A4)[1 — 7k(A)]~! < 1. This leads
to the inequality

1 — 4z~ Bl < (A ) e 4z, Byl
k Yell = (7T T(A) 0 Yo
k—1 k—1
TK(A) _ _ (3.31)
2 (7ogm) 18 —a
k_max sl +k_max 1B]153ssl)

For the vector hg it further follows that

Iherall < O@IFN + NANUIZk41ll + [1Z6]l) + [| Bl Vi-4a]-

It is easy to see that for sufficiently large k the first term on the right-hand side
of (3.31) will decrease far below O(u), while the second term will be at most
O(u)||B|| Y41 for all steps k starting from some index ko. Summarizing, for
sufficiently large k£ > ko we have the bound

1f = Az — Bl < O@)[IIfI + [ANNZ k2]l + 1Zxll) + 1 BIIY].
The second statement can be proved considering
—B )4 — 771(;'21 =—BTA ' f + BPA"' Bjrs1 — fl(ci)l
— BT[(A+ AAgy1)™t — A7YA(f — A%k — Bri1)
— BTAYA(f — A%y — Bfri1) — (f — ATk — Biri1))-

The first term on the right-hand side can be estimated using Theorem 3.1. Based
on (3.29) we have

1A + ) = AR = Ak~ Biesn)]| < 1 ]

which together with the bound on ||4g|| completes the proof. O
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COROLLARY 3.7. Assuming for sufficiently large k with ||gx+1—3x| < O(u)Yei1,
there exists a step kg such that the true residual f — AZ — Byr ts bounded

by

0] A 5
17 - 4z ~ Bl < 25 e

—1K(A)
for all steps k > ko. The quantity ?k(ko) 1s defined as ?k(k") = maX;—k,,... & ||¥l|-

(v)
k

The gap between —BT %, and 7;°’ can be estimated as follows

_ _ O(u)k(A _ S
|- BTz — 72l < ZE A g1+ 1819

—1K(A)

In Theorem 3.6, we assume that g ultimately stagnate so that ||gx+1 — Fx|| <

O(u)Ygy1 for sufficiently large k > ko. It appears that this condition does not

represent a serious restriction. Using (3.14) we have ||gx+1 — 9x|| < ||6tk;5§cy)|| +

O(u)}_’kH. We will show that the norm of dkﬁgcy) is much smaller than u for
large k, i.e., we can absorb it into the term O(u)Yy,:. Denoting Sy = BT (A +
AAy) !B, using (3.15) and (3.16) we have the bound

l&@xp? | < 218 NUIFEL 1 + 171 + 0@ 15 HII(A + A4 HIIBIPaxs |-
Provided that O(u)||S; *|||[(A + AAx) ||| BJ|? < 1, we obtain

218 I+ 1711
1— 0|13, (A + AAy)~1|[||BI?

Since the norms of updated residuals decrease far below the roundoff unit, the
assumption on ||Jxr+1 — k|| will be true for sufficiently large k. Note that
OIS M III(A + AAg) " HJ|IB||I> < 1 is nothing but the restricted assumption
of numerical nonsingularity of the Schur complement matrix BT A~!B.

The bound (3.27) is significantly better than its counterparts (3.20) and (3.23).
Theorem 3.6 describes that the residual f — AZx — By will ultimately reach
the roundoff unit level provided that the matrix GxGg_1 - - - G1 converges to zero
for k — oo. As soon as iterates g start to stagnate at their limiting accuracy
level, the rate of convergence of this nonstationary iteration process is bounded
by the factor 7x(A)[l — 75(A)]~. The behavior of —BTZy, is similar to that of
scheme (3.11). Indeed, when F,(cy converges ultimately below O(u), the residual
— BTz, remains proportional to 7. Figure 3.5 shows the norms of the residual
f — AZy — Biyx. The plot for —BTZ (not reported) is similar to the plot (d)
for the scheme (3.11). It is clear that in our well-conditioned case the stationary

laxp|| <
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method converges very fast and the rate of decrease of f — AZx — By is essentially
comparable to the convergence rate of the outer iteration.

1.5. Forward error analysis. In this subsection we estimate the maximum
attainable accuracy in terms of the errors ¢ — Zx and y — ¥%. First we formulate
the bounds in the 2-norm, then in the A-norm of the error ¢ — Zg, and then in
the BT A='B-norm of the error y — §x. The errors £ — Z; and y — Jx, and the
residuals f — AZy — B, and —BT %, satisfy

A B :17—.’1_,’k _ f—Afk—ng
& D605 e
We have the explicit expression for the inverse of the saddle point matrix

A B\™" [ (I-mAl —IIB(BTB)-!

BT 0 - _(BTB)leTHT _(BTAle)fl )
where [T = A"'B(BTA-!B)~!BT represents the oblique projector onto R(B)
along N(BT). Considering (3.32), the inequalities

17— A" = [AY2(1 - A™/*B(BTA*B) " BTA™ ) A7 < 0,.},(A)

min
and
INBT(B¥B) || = |4 */*(4 **B(BTA *B) *A V*)AY*B(BTB) !
< K2(A)0,in(B),

min
(note that A='/2B(BTA~1B)BT A~'/2 is the orthogonal projector onto the range
of R(A~'/2B), we obtain the bounds

e — Zull < 1 lf — A — Bl + %l - B7E]l (3:33)
ly — Gl < v2llf — AZx — Bl + 7sl| — B Zx]l, (3.34)
where 71 = 0.} (A), 72 = &Y/?(A)o} (B), and vz = 0.}, (BT A~'B) are con-

stants independent of the iteration step k. It is clear from (3.33), (3.34), and
Theorems 3.2, 3.4 and 3.6 that ||z — Zx|| and ||y — §k|| will be O(7) for all back-
substitution schemes. In contrast to our numerical example, the saddle point
systems that arise in practice can be ill-conditioned. In such cases the constants
71, Y2, and y3 may play an important role.

In exact arithmetic we have ||z —zk||a = ||y —yk||Ta-15- Since in finite precision
arithmetic the residual f — ATy — By is no longer zero, instead of this identity
we get

— _ 1/2 — _
llz - Zxlla — ly - Gxllsa-18] < M7 f — Az — Bgel.  (3.35)
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We can also formulate the proposition, which gives bounds for the errors in terms
of the residuals f — A%, — By, and —BTA~'f + BT A~ By

THEOREM 3.8. The A-norm of the error z — Zj, and the BT A~*B-norm of
the error y — §r can be bounded as

Iz — Zxlla <7°|If — Az — Bgel| +9°|| - BTA™ f + BTA By, (3.36)
ly — Gellgra1s <137l - BTA ' f + BTA ' By, (3.37)

ProOOF. It follows from (3.35) that

lz — Zxlla < ly — JxllBra-18 + ||z — Zxlla — |ly — FxllBTa-1B]
_ _1/2 _ _ (3.38)
<y = GxllBra-1B + Opin (A f — AZi — Bil|.

For the BT A~ B-norm of the error y — ¢; we have
ly — Gkllpra-15 = [|IBTA™' f — BT A7 Bii||(5ra-15)-1, (3.39)

which completes the proof. O

The first term on the right-hand side of (3.36) should be zero in exact arithmetic
and it describes how well the computed Z and g satisfy (3.7). The second term
is related to the Schur complement residual which in exact arithmetic should
converge to zero. The recursively computed residual F,(cy) is a good approximation
to —BTA~'f + BT A~' By, provided they are above the level given by Theorem
3.1. Therefore its norm represents an easily computable quantity for the second
term on the right-hand side of (3.36). The residual f — AZx — By depends on
the computed Z; and we distinguish between three schemes with (3.10), (3.11)
or (3.12), respectively. We can see that, no matter which implementation we use,
—BT A= f+ BT A~1 By, is a dominating quantity in (3.36). Therefore, ||z —Z||4
can be thus well approximated during the convergence by the quantity 'y;/ 2 ||7",(cy) |
or its estimate. Similar can be said also for ||y — §x||gra-15, see (3.37).

The errors ¢ — Ty and y — §x can be estimated with more sophisticated but easily
computable bounds (without explicit use of residuals and conditioning). As an
example we refer to the rounding error analysis of the conjugate gradient method
and various mathematically equivalent formulas for estimating ||z — Zx||4 [96]. It
appears that although many existing bounds were developed using exact arith-
metic considerations, they estimate successfully the energy error using computed
quantities which can be orders of magnitude different from their exact precision



38 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERS

counterparts. Therefore despite that we assume that A~! is performed inexactly,
it is feasible to estimate the BT A~! B-norm of the error y — .

In Figure 3.7 we report the relative error norms ||z — Zg||4a/||z — Zo||la and ||y —
FkllBTa-18/]lY — Yollpra-15. The inverse of A in the computation of BT A~!B-
norm is computed by a direct solver. In agreement with (3.36) and (3.37) and
Theorems 3.2, 3.4 and 3.6 (see also Figures 3.3-3.6), the relative A-norm of the
error ¢ — %, and also the relative BT A~!B-norm of the error y — ¥ begin to
stagnate at the level proportional to 7. Since the behavior of these quantities for
all implementations is similar, we present only the results for the scheme (3.11).
The slight difference is visible only in the gap between both error norms given
by the estimate (3.35).

2. Null-space projection method

In this section we deal with algorithms which compute approximations z; and
yr such that z; satisfies BTz, = 0 and y; solves the least squares problem
minimizing the residual f — Az — By, i.e.,

If = Az — By = min |If ~ Ack — Bu. (3.40)

We will denote (3.40) by Byx =~ f — Azy and assume that the approximate

solution zx41 and the residual vector r,(ci)l are computed using

Tpy1 = T + akpgf), (3.41)

rih =" — anap® - BpY, (3.42)

where r((,m) = BY(f — Azg). The vectors zo and pgf') belong to N(BT) and pgcy)

W (&) (=)

solves the problem Bp — apAp,, ' minimizing the residual

Ir? ~ axap,” — Bpll = min I ~ axAp)” ~ Bl

This residual update strategy was proposed in [44] (see also [21, 20]) and is

used to reduce the roundoff errors in the projection onto N(BT). Note that

the vectors pgcy) can be, with no additional cost, used as direction vectors for

computing the approximate solution yxi;. Again we will distinguish between
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outer iteration
Zg, solve Byg ~ f — Az, r(()z) = f — Azqg — Byo

fork=0,1,2,...

Thrr = zp + o)

inner iteration / back-substitution

(=)

(v) ~ r,(f) — agAp,,

solve Bp,,
A) Yri1 =Yk +P1(cy)
B) solve Bygy1 = f — Azg4
C) solve Bgx = f — Azkt1 — BYk, Ye+1 = Yk + G

A =~ cutof? — B

FicUuRE 3.8. Null-space projection method: Three different
schemes for computing the approximate solution yx11 (called in
the text the updated approximate solution (A), the approximate
solution computed by a direct substitution (B), the approximate
solution computed by a corrected direct substitution (C), re-
spectively).

three back-substitution formulas (the schemes are described in Figure 3.8)

Ye+1 = Yk +P§cy), pgf) = BT(T;(;D) - OlkAPEf)); (3-43)
Yet1 = BY(f — Azps1), (3.44)
Yet1 = Yk + BT (f — Aziy1 — Byg). (3.45)

The pseudoinverse BT in (3.43)-(3.45) is applied by solving the least squares with
the matrix B. These problems are solved inexactly. In our considerations we will
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assume that the computed solution v of the least squares problem Bv = c is an
exact solution of a perturbed problem (B+ AB)% =~ ¢+ Ac with ||AB||/||Bl| < 7
and ||Acl|/||¢|| € 7. The parameter 7 again represents the measure for inexact
solution of the least squares with B and actually describes the backward error.
This can be achieved in many different ways considering the inner iteration loop
solving the associated system of normal equations, the augmented system formu-
lation, or solving it directly. Similar inexact schemes have been considered for
solving quadratic programming problems [2, 3|, multigrid methods [20, 21] or
constraint preconditioners [63, 83, 89]. We assume 7x(B) < 1 which guaran-
tees B + AB to have a full column rank. This allows the use of the perturbation
theory (see [104] or [55, Lemma 19.8]), in particular the inequalities
e BT t_ t| < _27R(B)

I(B+ ABYI| < = g, I1BBY = B(B+ AB)I| < 177 .
Note that if 7 = O(u), then we have a backward stable method for solving
the least squares problem with B. In our experiments we applied the CGLS
method [16] with the stopping criterion based on the corresponding backward
error. Notation 7 = O(u) stands for the Householder QR factorization.

2.1. The attainable accuracy in the projected system. In this sub-
section we look at the accuracy in the outer iteration for solving the projected
system (I — II)A(I —II)z = (I — II)f. We can consider the perturbed system

(I -MA(I -1z = (I - TD)f, (3.46)
where [T = (B+AB)(B+AB)' such that ||AB|| < 7||B||. The residual associated
with the solution of (3.46) can be written as

(I-T)f—(I-MA(I -z = (I -II)f + (I - ) ATl - [1)& + (I - 1) A(I — 1)z
and due to [|IT—TII|| < ||AB|| min{||BY||,||(B+ AB)||} [55, Lemma 19.8] we have

(7 =7 = (7 = MU - W3] < {272

Indeed, even if we assume exact arithmetic, the residual obtained directly from &
is proportional to the parameter 7. In addition, we ideally have (B+AB)%& =0
which implies || — BT#|| < 7||BJ|||Z]|. Therefore we can expect that also the
residual —BTz;, associated with the computed approximate solution Z, will be
proportional to 7. Such analysis is dependent on the choice of a particular method
with the recurrences (3.41) and (3.42), and therefore we do not give it here. In

AT+ AN
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accordance with [47] it seems reasonable that the bound for —B7Zj is propor-
tional to the factor Xi. Moreover, the error in the projection of an arbitrary
vector is represented in the bounds by 7x(B)/[l — Tk(B)]. Therefore —BTz
and IIZ; can be expected to have the form

QOB 5., e < 2Bz, ean)

— BTz, <
I Tyl < — k(B

Theorem 3.9 shows that the true residual (I — II)f — (I — II)A(l — 1)z is
ultimately proportional to 7, while its projection onto N(B7T) will finally reach

the level O(u) provided that the updated residual F,(cz) converges far below that
level.

THEOREM 3.9. The gap between the true residual (I —IT)f — (I —II)A(I —I1)Z

and the projection of the updated residual (I — H)F,(cm) can be bounded by
_ _ O(1)k(B) -
I—T)f — (I - AU — )z — (I — 7P| < 2020 A|lX
(= M0F = (1 = MAQ )3 — (7~ < T 221+ 141%),

where Xy = max;—o__||Z:]|.

Proor. The computed approximation Zx. 1 satisfies the relations

Thir = B+ GkBY) + Ak, [Azkpr]| < ullZkll + (2u + u?)||axpl”. (3.48)
The inequality [|@py || < |1Zkall + [1Zk]| + | Azess|| gives [|axpl” ]| < 3Kk
and ||Azgy1|| < O(u)Xgi1. The vectors §p and p,(cy) satisfy (B + ABp)yo ~
i(f — Azo) + Aco with || ABo|| < 7||Bll, [|Acoll < TIIfi(f — Azo)|| and

(B + AB)Y ~ (7" — apAp®) + Acy, (3.49)
|AB|| < 7|1Bl|, [|Ack]| < TIAF® — axap)|). (3.50)

For updated residuals we have F((,m) =1fi(f — Azg — BYp) and

Y R A @51

1arE) 1 < o@)(IFP|| + lAllllas™ || + 11B]E1)- (3.52)
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The recursive use of (3.48) and (3.51) leads to the expression for the gap between

the projections of f — AZy and r( )

(I —T)(f — AZ — 7)) = (I — T)(f — AZo — 7))
k—1
M)(AAzit1 + Ar).
1=0
Taking norms and corresponding bounds we get, after some manipulation, the
following;:

I < O(u)x(B)
~ 1—7k(B)

Here we have used that ||r(z)|| < ||7"((,T')|| for k = 0,1, ... which seems reasonable
when solving the positive semi-definite problem. For the gap between (I —II)f —

(I —I)A(I =)z and (I — I'I)r,(c ), we can write

(I = TO)(f — Ay, — 7)) < (111 + 1| Al1 X) - (3.53)

I =T0)f — (I = MA( - Mze — (1~ MR < (- I)(f - Az — 7))
+ (I — M) Al |-
Considering (3.53) and (3.47) we can conclude the proof. O

In Figure 3.9 we report the relative norms of the true residual (I — II)f — (I —

IT)A(I — II)Z (solid lines) and the updated residual F,(f) (dashed lines). The
numerical results confirm that the residual f — A%y, is within N (B7) approximated

by r( ) to the working precision u. However, this is not true for the residual
(I— H)f — (I —II)A(I —IT)Zs which is ultimately O(7) as it follows from Theorem
3.9. The residual —BTz;, obviously does not depend on the back-substitution
scheme; see Figure 3.10.

In contrast to the Schur complement reduction method, the inexactness is con-
nected with the matrix B instead of A. In practice, the sequential application
of the matrix (I — II)A(I — II) does not represent a symmetric operator. This
is also reflected in the fact that we assume a general framework for comput-
ing the vector zx and analyze another projection of residuals f — AZy — By
and r( ), Ideally at every iteration step we apply the matrix-vector product
with the matrix (I — IT1)A(I — II), where IT represents the orthogonal projector
1 = (B+ AB)(B+ AB)' with [|[AB|| < 7||B||. A question similar to one in sub-
section 1.1 arises whether we can apply the results of [47] directly to the system
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F1cUuRE 3.9. Null-space projection method: the relative norms
of the true residual (I —II) f — (I —II)A( —II)Zx of the projected
system (solid lines) and the updated residual F,(f) (dashed lines)
— the updated solution scheme (3.43).

(I —)A(I — )2 = (I — I1)f. Theorem 3.9 shows that in finite precision arith-
metic the residual (I —II)f — (I —II)A(I — I1)Z, will remain proportional to the
parameter 7. The theory of Greenbaum can be directly applied only if the multi-
plication by (I —IT)A(I —II) satisfies ||fi[(] —T)A(J —II)z] — (I —IT)A(I —II)z|| <
O(u)||(I —TI)A(I —IT)||||z|| which is obviously not the case here. In the idealized
case we have fi[(I — IT)A(I — II)z] = (I — I)A(I — IT)z and hence
O(7)x(B)
|BI(7 ~ AU ~ M)a] — (7 ~ AU — Mal < 72 X Al

If we could improve this bound to satisfy ||fi[(] — IT)A(I — I)z] — (I — I1)A(I —
M)z|| < 7||A]|||z||, the outer iteration process could be viewed as an iteration in
finite precision arithmetic with the roundoff unit equal to 7 and the theory of
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FI1GURE 3.10. Null-space projection method: The norms of the
residual —BT %, — the updated solution scheme (3.43).

Greenbaum would lead to the estimate

I~ )f (1 - AU ~ )6 — 72 < 2 Al el + ).

— 7k(B)
The numerical behavior of the null-space projection method was studied also in
[2, 3], where the inner least squares are solved by the QR or LU factorization with
7 = O(u) and the projected system is solved inexactly with the parameter . Our
Theorem 3.9 thus gives an answer to the question of how small can the parameter
7 be in the outer iteration. Roughly speaking, when using the error or residual
minimizing method for solving the projected Hessian system the backward error
associated with the iterate ; cannot be smaller than O(u)x(B)/[1 — O(u)x(B)].

It is clear that no matter how we compute Z; and 3, we have the following
relation between (I — I1)f — (I — I1)A(I — I1)Zg, f — AZy — By and —BTzy:

(I-T)f — (I - A —)zx = (I — )(f — AZx, — Byx) + (I — 1) Allzy,. (3.54)
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Ficure 3.11. Null-space projection method: The relative
norms of the true residual f — AZ, — By and the updated resid-

ual F,(f) (for the updated solution scheme (3.43)).

Owing to (3.47), [1Z; (and thus also —BTZy) is O(7). From Theorem 3.9 we have
that ||(I —II)f — (I —II1)A(I —I1)Zk|| is ultimately O(7). Since (I —II)(f — Azg) =
(I = )(f — Azx — Byy) for any gi it also follows from Theorem 3.9 that the
projection of f — AZy — By onto N(BT) will ultimately reach O(u). It is not
clear from (3.54) whether the whole residual f — AZ; — By will be ultimately
O(7) or O(u). It strongly depends on the back-substitution scheme used for
computing the approximate solutions yi1. The following subsections show that
the residual f — AZy — By for the schemes with (3.43) (scheme A) and with
(3.45) (scheme C) will finally reach O(u), while the scheme B using (3.44) leads
to the accuracy that is proportional only to .

2.2. Scheme A: The updated approximate solution. In this subsec-
tion we analyze the generic scheme with the update (3.43). This implementation
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FiGure 3.12. Null-space projection method: The relative
norms of the true residual f — AZ, — By and the updated resid-

ual F,(f) (for the direct substitution scheme (3.44)).

does not require any additional solution of a least squares problem with the ma-
trix B. Indeed, the computed direction vector pgcy) is used to update both the
iterate yx and the residual F,(f). As we will see, this algorithm computes the
residual f — AZ, — Byx which will ultimately reach the level of roundoff unit

u independently on the fact that the inner least squares are solved with the
accuracy determined by the parameter 7.

THEOREM 3.10. The gap between the residuals f — Az, — BYr and F,(f) can
be bounded as follows:

If — Azy, — By — 7|l < O(w)(|IfI] + | All X + | BI|Fs),
where Y3, = maxi—o,. k ||i]|. The statement of the theorem remains true if
we replace Yy by max{||vol|, ||p£y)||, 1=0,1,...,k—1}.
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Ficure 3.13. Null-space projection method: The relative
norms of the true residual f — AZ, — By and the updated resid-

ual F,(f) (for the corrected direct substitution scheme (3.45)).

PROOF. The vector Zy,; satisfies (3.48) with ||Azgi1|| < O(u)Xky1 and
similarly for ¢4, we have

Terr = Tk + D) + Aysr, [[Avera]l < ullge]] + (2u + w252

with ||Aygs1]] < O(u)Yey1. Theresidual F,:_?l satisfies (3.51) and thus ||Ar,(c?1|| <
O(u)(||r',(f)|| + ||A||Xk+1 + ||B||Ye+1). Using the above relations we obtain the
recursive formula

f— Afk+1 — BYgy1— Fl(cci)l = f— AZy — Byr — F,(cm) - AA$k+1 - BAyk+1 — Ar,(ci)l.

Taking the norms we get, after some manipulation, the following:

k—1
If — AZy, — B, — 77| < O(u) (IIfII + || AR, + 1BIF + > ||r'£“||> .
1=0
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FIGURE 3.14. Null-space projection method: the relative norms
of the errors ||z — Zg||la/||z — zo|la (solid lines) and |y —
Fkllra-18/|lv — Gol|ra-15 (dashed lines) — the update solu-
tion scheme (3.43).

The statement can now be proved by induction on k.

d

COROLLARY 3.11. The gap between the residuals f — AZy — BYx and F,(f) can

be bounded as follows:

. (= o
If - Az — Bge — 77| <

(u)x(B)

By UM+ 141 %),

We have shown that F,(cz) is a good approximationto f— AZ; — By independently

—(v)

of the fact that p;

are computed inexactly.

Note that Theorem 3.9 can be

derived using Theorem 3.10 due to ||[({ — II)(f — AZg — F,(cz))H = ||(I = IO)(f —
AZy — By — F,(cz))H < ||f — Az, — By —F,(f) ||. In Figure 3.11 we show the relative
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norms of f — AZy — BYx (solid lines) and F,(f) (dashed lines). The results of our
numerical experiment are in a good agreement with Theorem 3.10.

2.3. Scheme B: The approximate solution computed by a direct
substitution. In this subsection we analyze the scheme (3.44), which uses the
directly computed right-hand side vector f — Azy. The computed g is then a
solution of the perturbed problem

(B + ABy) G ~ (f — AZx) + Ack (3.55)

with || ABg|| < 7||B|| and ||Ack|| < 7||A(f — AZ)||. We will show that (I —IT)7(")
is a good approximation of f — AZ, — By provided that both are above their
level of maximum attainable accuracy.

THEOREM 3.12. The gap between the residuals f — AZy, — By and (I — H)F,(f)

can be bounded by

I~ 43~ B — (1~ W72 < 2L 151+ Al

+O@)(If1l + |4l Xk + || BIIYx)-
ProoF. Considering (3.55) it follows for the true residual that
f — A%y — Bgy, = f — AZy — B(B + ABy)[A(f — AZy) + Ack]
= (I —TI)(f — AZy) + B[BY — (B + ABy)T|A(f — AZy)
+ BBYA(f — A%g) — (f — AZg)] — B(B + ABg) Acy,.

Taking (3.55), the bounds on B[BT — (B + ABjy)1], (B + ABy)t and Theorem 3.9
we get the desired result. 0

COROLLARY 3.13. The gap between the residuals f — AZy— By and (I—I'I)F,(f)
can be bounded by

17 = 482~ B~ (1071 < ZEEA+ LAN)
O(wr(B) _
OB 51+ 41

When using the formula (3.44) the residual f — AZy, — Byy will not decrease below

a level proportional to 7, while (I — H)F,(f) converges beyond the level O(u). This
result is illustrated by our numerical experiment. In Figure 3.12 we plotted the

relative norms of f — AZy — By (solid lines) and F,(cz) (dashed lines).
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2.4. Scheme C: The approximate solution computed with a cor-
rected direct substitution. In this subsection we analyze the scheme (3.45)
requiring a solution of two least squares problems with B. We show that its
behavior is similar to the algorithm using the update (3.43). We prove that un-
der certain assumptions the true residual f — AZx — By converges ultimately
to the O(u) level. The difference is that while Theorem 3.10 holds without any
additional conditions, here we have a situation analogous to the behavior of non-
stationary iterative methods (see [55, Chapter 16]).

THEOREM 3.14. Prouvided that for sufficiently large step k the computed vec-
tor T stagnates, t.e., we have ||Tr+1 — Tk|| < O(u)Xk11, there exists some
iteration step kg such that

If — AZx — B — (I — )7 || < O(w)(|I£]] + ||All Xe + | B|¥x)

holds for all k > k.

ProOF. The vector k1 satisfies Jr11 = Jx + (j,(cy) + Aygy1 and [|Aygy1]] <

O(u)Yg+1, where cj,(cy) is the solution of the problem (B + ABk)(j,(cy) ~ (f —
AZyp1 — Bik) + Ack with [|ABg|| < 7[|B|| and ||Ack|| < 7(|f(f — AZk4+1 — BYx)|-
For f — AZg 1 — Byg+1 we can then write
f—AZpy1 — Byprr = (I = I)(f — AZgq1) + Gr(f — AZy1 — Bi)
— B(B + ABy) Acy, + ha,
where Gk = B[BT - (B+ABk)T] and hk = —B(B +ABk)T[ﬁ(f —A:I_,‘k+1 — ng) —
(f — AZg41 — Byx)] — BAygy1. Projecting f — AZg4+1 — BYg+1 onto R(B) and
taking norms, we obtain
IT(f — AZx1 — BFia)ll < [[|Grll + 71 B(B + ABR)[] || f — AZ41 — Bgxll
+7(|B(B + ABw)Y||||8(f — AZxy1 — Bix) — (f — AZry1 — Bx)|| + [|Pall.

The term ||f — AZx41 — BYx|| can be further bounded by

If = AZya — Byxll < ||(1 = IN(f — AZgra)|| + ITL(F — AZx — By
+ |A(Zk 1 — Zx)]
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which together with the bound on ||Gx||, ||hx]] < O@)(||fI|+IAl Xkr1+]B|[Ver1),
and 7||B(B + ABg)t|| < 7.(B)[1 — 7(B)]™! < 1 leads to

= _ 37k(B
IT(F — Apir — Bl < o)

K,(B) [Hn(f - A"I_:k - ng)”
HI(I =ID(f — AZg1)[| + 1Al Zk+1 — Zk]]
+O)(IFIl + 1Al X k41 + || BI|Yet1)-

After the recursive use of the previous inequality we obtain

37k(B)

k
In(s - 4o~ Bl < (T2l ) I - Aso - Bl

k-t k—i

+ Z (%) NI =T0)(f — AZip )| + JAN|Ziv1 — Z:]]] (3.56)
=0

+ O@)(|If]] + |All Xk + || B]|Yx).

Under the assumption on the stagnation of iterates there exist some index kg such
that the second term on the right-hand side of (3.56) will be of order O(u)(]| f|| +
||Al| X% + || B||Y%) for all iteration steps k > kg. Finally, from Theorem 3.10 we

have ||(I - T)(f — AZx) — (I - )70 || < O(w)(IfI| + 1Al Xx + |1BIT:). O

COROLLARY 3.15. Prouvided that for sufficiently large step k the computed
vector Iy, stagnates, i.e., we have ||Txy1 —Zk|| < O(u)X11, there exists some
iteration step ko such that

I = 48~ B (1~ A < 22171+ 141%)

holds for all k > kqg.

Theorem 3.14 shows that f — AZ; — By will ultimately reach the O(u) level. As
soon as the approximate solutions Zj stagnate with ||Zx11 — Zx|| < O(u)Xk+t1,
the rate of convergence of this process is roughly given by the factor 37x(B)[1 —
7k(B)]!. Note that similar to subsection 1.4 the assumption on the stagnation
is not restrictive. The numerical results on a model example are shown in Figure
3.13, which reports the relative norms of f — AZy — By (solid lines) and F,(cm)
(dashed lines), and are in a good agreement with Theorem 3.14.
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2.5. Forward error analysis. In this subsection we look at the maximum
attainable accuracy measured by errors z — Zx and y — ¢x. The analysis is
very similar to the Schur complement reduction method and therefore we focus
only on issues particular to the null-space projection method. We recall that
relation (3.32) gives the universal bounds (3.33), (3.34), and (3.35). Independent
of the back-substitution scheme used for computing ¥, the terms vz|| — BT Z||
and 73|| — BTZ|| on the right-hand side of (3.33) and (3.34), respectively, are
always proportional to 7. The terms with f — AZ, — By, depend on the back-
substitution formula and their final magnitude will be at most O(7), leading to
similar conclusions on errors as in subsection 1.5. The estimate for ||z — Z||4 is
given in the following theorem.

THEOREM 3.16. The A-norm of the error x — Ty can be bounded as

Iz — Zxlla < 8ull = B 2]l + 62(I(1 — T)(f — Az)Il, (3.57)
where 61 = ||A||/? /0 min(B) and §; = a;%z(A) are constants independent of

the iteration step k.

ProoF. Since (I — M)A(z — %) = (I — II)(f — AZ), BTz = 0 and using

I|B(BTB) || = 0,.}..(B), ||z — Z1||% can be written as

Iz = Zella = ([(z — Zx), A(z — 2x)) + (I — ) A(z — Z),  — Zx)
<142 |lllz — 2 a(1B(BTB) || BT (= — zx)||
+ (7 = I)(f = Az)])-
Dividing both sides by ||z — Zx[|a gives the statement (3.57). O

The first term on the right-hand side of (3.57) should be zero in exact arithmetic.
The computed Zj, however, does not fulfill —BTZ; = 0 and its departure from
N(BT) was discussed in (3.47). The second term converges to zero in exact
arithmetic and it is related to the projected residual (I —II)(f —AZx), see Theorem
3.53. The result for y—gj can be obtained from (3.57) using (3.35). Provided that

F,(f) is larger than O(7), ||z — Zx|| 4 is then well approximated by 6 |(f — H)F,(f) II.

3. Numerical experiments in the nonsymmetric case

In this section we consider a nonsymmetric block A in the system (3.1). Hence
the difference here is that we apply a nonsymmetric iterative method to solve
the Schur complement system BT A !By = BTA~!f and the projected system
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(I —II)A(I —II)z = (I —II)f. We demonstrate the theoretical results of Sections
1 and 2 on a simple numerical example of a nonsymmetric system (3.1) with

A = tridiag(1,107°, —1) € R?%100 B — rand (100,50), f =(1,...,1)7.

Since k(A) = ||A||[|[A7Y|| = 2.00 - 32.15 = 64.27 and «(B) = ||BJ|||BY|| = 7.39 -
0.75 = 5.55, the conditioning of matrices A and B has not a significant effect
on the behavior of considered schemes. For each test we set yp = 0 and zg = 0
for the Schur complement reduction method and for the null-space projection
method, respectively.

The norms of the updated residual vectors converge usually to zero or at least
become orders of magnitude smaller than unit roundoff. It follows from our
theory that in such cases the true residuals associated with the approximate
solutions T and ¥y stagnate on the level proportional to the maximum norms
(measured either by Xj or Y) of iterates computed during the whole iteration
process. It is also a well-known fact that for methods in which some (fixed) norm
of the error or the residual decreases monotonically the maximum attainable
accuracy level depends then on the norm of the initial residual.

One of the most straightforward methods to solve a general nonsymmetric sys-
tem is the CGNE method [54, 25] which transforms the solution of a general
square system to the symmetric positive (semi)definite system of normal equa-
tions. Since the CGNE method is nothing but the CG method [54] applied to
the system of normal equations, its approximate solution minimizes the 2-norm
of the error over the associated Krylov subspace. Because the condition number
of the system matrix is squared, we can expect rather slow convergence of CGNE
in general. Therefore, the use of the GMRES [88] method is preferred where the
residual norm is minimized over the entire Krylov subspace generated with the
original system matrix and corresponding right-hand side. Indeed, due to the
optimality of iterates the quantities X, and Y; in CGNE and GMRES applied
either to the Schur complement system or to the projected system cannot be sig-
nificantly larger than the size of the initial approximations zg, yo and unknowns
z and y. Depending on the actual backsubstitution formula the maximum at-
tainable accuracy level is then proportional either to roundoff unit u or to the
parameter 7, and the quantities Y3 and X do not play an important role in our
bounds.

Unfortunately, for general nonsymmetric systems the GMRES method cannot

be implemented without full recurrences. In order to reduce the storage and
computational work several classes of nonsymmetric iterative methods have been
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proposed including very popular methods based on the nonsymmetric Lanczos
process such as Bi-CG [35] or CGS [93]. These methods compute the iterates and
residual vectors using short recurrences keeping the computational cost constant
at each iteration step (in contrast to the linear growth for the case of GMRES).
The approximate solutions of such methods are however no longer optimal and
their convergence behavior can be quite irregular (they even may occasionally fail
to converge). In practice the norms of iterates can become very large during the
initial phase of the computation until the iterates begin to converge and finally
to stagnate near the true solution. For this reason one cannot give an a priori
bound on X}, and Yy, and indeed the algorithms for solving the Schur complement
system and the projected system such as the Bi-CG or CGS method may fail to
obtain small ultimate residuals even if the updated residuals converged beyond
the unit roundoff. So the possibility of large iterates may correspondingly affect
the maximum attainable accuracy level for such nonsymmetric iterative methods.

An example of these effects is shown in Figure 3.15 where we consider GMRES,
CGNE, Bi-CG and CGS in the Schur complement reduction method with the in-
ner systems solved by the direct method based on the LU factorization of the ma-
trix A. Similarly in Figure 3.16 we report the results for the null-space projection
method, where the inner systems were solved using the Householder QR factor-
ization of the matrix B. We have plotted the true residual BT A~! f — BT A~ By,

and (I — II)(f — AZx) and the updated residuals F,(cy) and F,(f), respectively for
GMRES (solid lines), CGNE (dash-dotted lines), Bi-CG (dotted lines) and CGS
(dashed lines). As the computed residuals converge to zero for all methods (or
to the unit roundoff level in the case of the GMRES method), true residuals in
the Schur complement system and in the projected system behave as indicated
by the estimates of Theorem 3.1 and 3.9. It is clear from Figures 3.15 and 3.16
that for the error norm minimizing CGNE and the residual minimizing GMRES
is the maximum attainable accuracy level proportional to the unit roundoff. The
quantities Y, and X are comparable to the size of unknowns y and = and they
do not affect the limiting accuracy of computed approximate solutions. The sit-
uation is completely different for the Bi-CG and CGS methods where the size
of iterates grows approximately to 10° (for Bi-CG) and to 107 (for CGS) in the
Schur complement reduction method, or to 10° (for Bi-CG) and to 10*! (for CGS)
in the null-space projection method (see the corresponding Tab. 3.1). Indeed,
the results confirm that the final residuals reach the levels which are roughly
equal to O(u)Yy or O(u)Xj instead of O(u). Note that the matrices A and B



3. NUMERICAL EXPERIMENTS IN THE NONSYMMETRIC CASE 55

relative residual norms ||B"A*-B"A" By, I/|IB"A™ ]| and ||r‘ky’||/||BTA‘1f||
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FIGURE 3.15. Relative norms of the residual BTA-'f —
BT A 1By in the Schur complement reduction method with
respect to the iteration number for GMRES (solid lines), CGNE
(dash-dotted lines), Bi-CG (dotted lines) and CGS (dashed lines)
with a direct solver used for the solution of inner systems.

are well conditioned and thus the norms of the Schur complement matrix and
the projected matrix do not affect the final accuracy level for this example.

In Figures 3.17 and 3.18 we report the norms of the residual f — AZy — By in
the Schur complement reduction method where the system (3.3) is solved by the
Bi-CG method (on the left) or by the CGS method (on the right). In each plot we
show the norms of f — AZy — By for the generic update (solid lines), the direct
substitution (dashed lines) and the corrected direct substitution (dotted lines).
The inner systems are solved either by the direct solver (LU factorization) or by
the Bi-CG method with 7 = 10712, The presented results confirm our estimates
from the previous section. From Figures 3.17 and 3.18 we can see the difference
between the final accuracy levels of the norm of f — AZy — By for the generic
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FIGURE 3.16. Relative norms of the residual BTA~!'f —
BT A"'B7 in the null-space projection method with respect
to the iteration number for GMRES (solid lines), CGNE (dash-
dotted lines), Bi-CG (dotted lines) and CGS (dashed lines) with
a direct solver used for the solution of inner systems.

update (3.10) and for the direct substitution (3.11) (see Corollary 3.3 and 3.5). In
the first case, where the ultimate accuracy level depends on the maximum norm
of the iterates Yy, the residual is essentially growing due to the accumulation of
the residuals in inner systems. On the other hand, for the direct substitution
(3.11) the maximum attainable accuracy of the first equation in (3.1) is bounded
by the norm of the actual iterate gx. The norms of f — ATy — By are somewhat
oscillating which reflects the jumps of ||yx|| in the initial phase of the iteration
process. When the norms of 7 begin to stagnate, the norms of f — AT, — By do
so but on much smaller level than for the generic update (3.10). This difference
between the accuracy levels is even more significant for the CGS method which
exhibits much larger oscillations of the iterates. Note that both for Bi-CG and
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Schur complement reduction | Null-space projection
?k ?k Xk Xk
(dir. sol.) (r =10712) (dir. sol.) | (7 =1079)
GMRES | 1.6155-10* | 1.6155-10? 3.9445.10% | 3.9445.10%
CGNE | 1.6157-10% | 1.6156-10! 3.9445-101 | 3.9445-10%
BiCG 9.8556-10% | 1.5190-10° 6.5733-10° | 6.5733-10°
CGS 3.3247-107 | 7.7455-10° 5.2896-1010 | 5.2896-101Y

TABLE 3.1. Quantities Yy and X in the Schur complement
method and in the null-space projection method, respectively,
for GMRES, CGNE, BiCG and CGS.

CGS the residual norms for the corrected direct substitution converge to the unit
roundoff level and it is not affected by the oscillations in the initial phase (see
Corollary 3.7).

In Figures 3.19 and 3.20 we report the norms of the residual f — AZy — By, for
the null-space projection method where the projected system is solved either by
the Bi-CG method (on the left) or by the CGS method (on the right). In each
plot we show the norms of f — Az — By for the generic update (solid lines), the
direct substitution (dashed lines) and the corrected direct substitution (dotted
lines). The inner systems are solved either by the direct solver (Householder QR
factorization) or by the CGLS method with 7 = 10~°. The results confirm our
estimates discussed in the previous section. For the direct substitution (3.44)
the bound for the attainable accuracy level of f — AZx1 — Byi+1 depends on
two terms. The first is proportional to the unit roundoff v and to the quantity
X, while the second term is proportional to 7 and to the norm of the actual
iterate Z; (see Corollary 3.11 and 3.13). Therefore, if the convergence behavior
is very dramatic, the maximum attainable accuracy can be significantly affected
by the rounding errors proportional to © dominating the bound over the terms
dependent on the parameter 7. However, when the convergence behavior is quite
regular the ultimate level of the norm of f — AZx — Byy does depend also on
7. This can be seen in Figures 3.19 and 3.20. The final level of the residual
f — AZy — By in Bi-CG (with the direct substitution scheme and 7 = 107°)
is still dependent on 7 (on the left), while the same quantity for CGS (with
more irregular convergence behavior), is actually dominated only by the rounding
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FIGURE 3.17. Schur complement reduction method: Relative
norms of the residual f — ATy — By for the Bi-CG method using
the generic update (solid lines), the direct substitution (dashed
lines) and the corrected direct substitution (dotted lines) with
the inner systems solved either by a direct solver or by an iter-
ative method where 7 = 10712,

errors (on the right). For other two back-substitution formulas the norms of
f — AZy — By, ultimately stagnates on the level proportional to . In contrast to
the Schur complement reduction method for both Bi-CG and CGS the residuals
in the corrected direct substitution scheme (3.45) converge to the level of unit
roundoff affected however by the oscillations of the iterates (see Corollary 3.15).

4. Backward error estimate for the Schur complement reduction

We can also interpret the solution computed by an inexact method as the ex-
act solution of a perturbed problem. It seems quite reasonable to use the local



4. BACKWARD ERROR ESTIMATE 59

relative residual norms ||f—Axk—Byk||I||f||
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F1cUurE 3.18. Schur complement reduction method: Relative
norms of the residual f — ATy — Byx for the CGS method using
the generic update (solid lines), the direct substitution (dashed
lines) and the corrected direct substitution (dotted lines) with
the inner systems solved either by a direct solver or by an iter-
ative method where 7 = 10712,

backward errors of inner systems to give an estimate on the global backward
error associated with the original saddle point system. In this section we try to
illustrate these ideas to the case of the scheme A of the Schur complement reduc-
tion (see subsection 1.2). Instead of the system (3.1) we consider the generalized

saddle point system
A B z\ _ (f
(50 ) ()=0) 5

where A, B and f are as in the previous sections and C' is an m x m matrix
(often symmetric positive semidefinite in applications).
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FiGUure 3.19. Null-space projection method: Relative norms
of the residual f — AZx — Byx for the Bi-CG method using
the generic update (solid lines), the direct substitution (dashed
lines) and the corrected direct substitution (dotted lines) with
the inner systems solved either by a direct solver or by an iter-
ative method where 7 = 107°.

Assume that the initial approximation o satisfies

AZo = (f — Byo) + s57, [Is521 < 7§21 Alll1Zoll, (3.59)

(z)
0

where s; ’ is the residual. Note that the condition on ||38T') || is equivalent to that

used in Section 1.2. Similarly let the computed direction vectors pgz) satisfy

45" = 8(=Bp”) + 57, (|5 < | 4] 7]l (3.60)

The vector sEp ) is the corresponding residual. Based on these considerations we

can formulate the following theorem which states that the computed iterates
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F1GURE 3.20. Null-space projection method: Relative norms of
the residual f — AZy — By for the CGS method using the generic
update (solid lines), the direct substitution (dashed lines) and
the corrected direct substitution (dotted lines) with the inner
systems solved either by a direct solver or by an iterative method
where 7 = 107°.

and g satisfy a perturbed equation f — (A + AA)z — By = 0. In addition, we
give a bound on the norm of the difference g — BTz, + Cyx — _,(cy).

THEOREM 3.17. The iterates computed with the algorithm of the Schur com-
plement reduction method using the back-substitution formula (8.10) satisfy
the inequality

If — (A+ AAW)z, — Byl

= = 3.61
< w|[f|| + Skul| || X + (1 + ¢+ (5 + 2¢)k)ul| B|[Ts. (3.61)
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where the perturbation matriz AA®) is given by

AAR) = a;s! (p) :I_:k
( Z ik

with
7 |zol| + 50 7P & |
B

|AAR| <yl All, 7 =
and
Xy =max{||z;]||: =0,1,...,k}, Yx = max{||%|||:=0,1,...,k}.

The norm of the gap between the true residual g — BTZ, + Cyr and the

updated one F,(cy) can be bounded as follows

lg = BTZx +Cx — 7 || < ullgll+ (3+ c+ (12 +2c)k)u(|| B|| Xi +[IC|Tx). (3.62)
Proor. The computed iterates ; and y; (: =0,1,...) satisfy
Tigt =B+ QP + Azipr, [|Azs41] < ullEl] + 2u@p”| + O(u?), (3.63)
Gip1 =0+ @B + Ayier, (1 Aggall < ull@il] + 2ull@p” | + O(u?). (3.64)
Since [|&5)|| < 1741l + 13l + | Azi 1], we obtain
1887 || < (14 2u)||Zs 1 ||+ (14 3w)|| 2]+ O(u?) < (2+5u)Xiy1 +O(u?) (3.65)
and hence the inequality (3.63) becomes
1Az 1| < 2ul|Ziq1]| + 3ul|Z:]| + O(u?) < 5uXiy1 + O(u?). (3.66)
Similarly
182N < (1420) Gl + (1 + 3u)l15:l| + O(u?) < (245u)Tis1 +O(u?) (3.67)
and hence the inequality (3.64) becomes
1Agss1]l < 2ullgisall + 3ullgil] + O(u?) < 5uFisy + O(u?), (3.68)
The computed updated residual satisfies
_Ei)l =¥ _ aBTp® + a;cpY) + Argi)l (3.69)
with
1Ar 1 < w72+ (3 + ull|Blllas” || + ICllas?l) + O(u?).
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Using (3.65) and (3.67) we get
IAr& N < ull7®) + (6 + 20)u(| Bl Xiss + [IC||¥is1) + O(u?).  (3.70)
To obtain the first statement (3.61), we start with
f— AZis1 — By = f — AZ; — B — G AP — &;BpY) — ADziy: — BAyis
= f — Az — By — &is? + ai(8(BpY)) — Bp")) — ADzii — BAyii

which gives

k—1
f— AZy — BYyy = —sé ) &-SEP)
=0
— (8(f — Byo) — (f — Byo))
k—1
+ Z (561‘ (ﬁ(B@(‘y)) - Bﬁgy)) —AAz; ) — BAyi+l>
1=0

using (3.59) and (3.60). Now (3.61) follows by taking norms and using (3.66),
(3.68) and the definition of AA(*). The second statement (3.62) follows from
9—BT% 11+ Cip1 — 7Y, = g— BT+ Ci — 7% —= BT Azi 11+ C Ay 1 — A1)

The recursive use of this identity gives

9—BTZ + Cg — 7Y = g— BT + Cyo — 7

e ®) (3.71)
+ Z(—B Azipy + CAy1 — Aryiy).
1=0

It can be easily shown by induction that ng) = g—BT%,+C%;+0O(u) and hence
(3.70) becomes [|Ar®), || < (7 + 2¢)u(||B||Xis1 + |C||¥is1) + O(u?) and taking a
norm on both sides of (3.71) proves the desired result. 0

The theorem shows that the computed iterates zx and 7y are the block compo-
nents of the exact solution vector of the perturbed saddle point problem

A+AA(k) B Tk B f"'Afk
184l < O@)IFIl + 141 % + 1BIT),
18gell < O(w)(lgl + 181 + ICIT) + 7]

where
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When the norm of F,(cy) drops below the level of unit roundoff the iterates Zx
and g satisfy the system (3.72), where the inexactness of inner systems is con-
centrated mainly in the perturbed matrix A + AA() | while the right-hand side
is affected only by an O(u) perturbation. The inner backward errors Tém) and

Ti(p) should be small enough to ensure that the perturbed matrix A + AA®) is
nonsingular which gives an upper bound on 7. However this quantity depends
on terms known the step k of the iteration process and it is not clear at the
moment how to choose a priori the inner tolerances Tém) and Ti(p ) to ensure that
the condition v, < 1/k(A) will hold. See [90, 39] for similar issues related to
GMRES and FOM, and [2, 3] for the backward error analysis when sparse elim-
ination techniques combined with iterative methods are applied to the solution

of saddle point problems arising in sparse quadratic programming problems.



CHAPTER 4

Numerical stability of some residual minimizing
Krylov subspace methods

In this chapter we consider certain methods for solving a system of linear algebraic
equations
Az =b, A e RV beRY, (4.1)

where A is a large and sparse nonsingular matrix that is, in general, nonsymmet-
ric. For solving such systems, Krylov subspace methods are very popular. They
build a sequence of iterates z,, (n = 0,1,2,...) such that =, € zo + K, (4, 70),
where K, (A,79) = span{rg, Arg, ..., A" !ro} is the nth Krylov subspace gen-
erated by the matrix A from the residual rg = b — Az that corresponds to
the initial guess z¢. Many approaches for defining such approximations z,, have
been proposed, see, e.g., the books by Greenbaum [47], Meurant [72], and Saad
[87]. In particular, due to their smooth convergence behavior, minimum residual
methods satisfying

|rnll = min  [[b— AZ[|, rn=b- Az, (4.2)
E€zo+Kn(A,r0)

are widely used, e.g., the GMRES algorithm of Saad and Schultz [88].

The classical implementation of GMRES makes use of a nested sequence of
orthonormal bases of the Krylov subspaces K,,(A4,70). These bases are gener-
ated by an Arnoldi process [6]. With the notation py = ||7oll, @ = pp 7o,
@~ = [q1,-.-,9n], where the columns of @, form this orthonormal basis of
Kn(A, 7o), and with an (n + 1) x n upper Hessenberg matrix Hy, 1, its result
can be cast in matrix form as

[ql; AQn] = Qn+l[ely Hn+1,n]-

This can be viewed as the QR factorization of the matrix [g1, AQ,]. Ultimately,
an approximate solution z, satisfying the minimum residual property (4.2) is
constructed in the form z, = zo + @nYn, but =, is not needed at every step.

65
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From the relation

Irnll = llro — AQnynll = llpoer — Hnt1,n¥nl

it follows that y, is the solution of the (n + 1) x n least squares problem
Hpt1,nYn = poe1, and that ||r,|| equals the norm of its residual pge; —Hp+1,nYn €
R™*1. This problem can be solved via the recursive QR factorization of Hp 15,
updated by applying n Givens rotations and determining a new one in the nth
step. Once the norm of the residual is small enough — which can be seen with-
out explicitly solving the least squares problem — the triangular system with
the computed R-factor is solved, and the approximate solution z, is computed.
In [27, 48, 78] it was shown that this “classical” version of the GMRES method
is backward stable provided that the Arnoldi process is implemented using the
modified Gram-Schmidt algorithm or Householder reflections.

Here we deal with a different approach proposed by Walker and Zhou [103], who
called it the Simpler GMRES method. To derive it, we recall that the minimum
residual property (4.2) is equivalent to the orthogonality condition

rn L AK,(4,70),

where L is the orthogonality relation induced by the standard Euclidean inner
product (-, -). Instead of building an orthonormal basis of IC,,(4, 7o) we look for
an orthonormal basis V,, = [v1,...,v] of AK,(A,7). As proposed by Walker
and Zhou, we could construct it again by an Arnoldi process. This leads to the
QR factorization

A[Ql; Vn—l] = VnUn; (43)

where U, is an n X n upper triangular matrix. We propose a generalization that
consists in allowing to replace this Arnoldi process. Instead of using the image
Avp,_1 of the last constructed orthonormal basis vectors to extend the basis
we consider any nested sequence of matrices Z,_1 = [z1,...,2n_1] such that
the columns of [q1, Z,—1] form a basis of IC,,(4, ), and we make use of Az,_;
to extend the basis. We may assume that the columns 2, of Z,,_; have unit
length (and we will do so in the error analysis), but they need not be mutually
orthogonal. The orthonormal basis V;, of AK,(A,rg) is thus obtained from the
QR factorization of the image of [g1, Zn—1]:

Alg1, Zn—1] = VyUn. (4.4)

Since 7, € 79 + AK,(A,70) = ro + R(V3,) and r,, L R(V}), we can obtain the
residual from 7, = (I — V,,V,¥)ro. Note that r, is just the orthogonal projection
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of 7o onto the orthogonal complement of R(V,,). To compute it we apply the
modified Gram-Schmidt method, which leads to the recursion

Tn = Tp_1 — OpUn, ap = (Tp_1,Vn). (4.5)

This recursion can be cast into a matrix relation too. Let R,y1 = [ro,...,"n],
let D, = diag(ai,...,an), and let Lpy1, € R(®+1Dx" be the bidiagonal matrix
with ones on the main diagonal and minus ones on the first subdiagonal; then
(4.5) can be written as

Rn+an+l,n - VnDn (46)

Since the columns of [g1, Z,_1] are a basis of (4, rg), we can represent z, in
the form

Tn = To + [q1, Zn_1]tn, (4.7)
so that r, = ro — A[q1, Zn—_1]tn = 70 — VuUnrt,. Due to the minimum residual
property, we have r,, L R(V,,), and thus simply

Upt, = V,;‘Fro =[oa,..., an]T. (4.8)

Hence, once the residual norm is small enough, we can solve this triangular
system and compute z, = zo + [q1, Zn—1]tn. We call this general approach
the stmpler approach. It includes, as a special case, Simpler GMRES, where
Zin—1 = Vp_1. We will also be interested in the case of the residual basis
91, Zn—1] = [Xr, ..., 2], which we will call SGMRES/RB, where “RB”

llroll 7= =77 [Irn—1l
refers to “residual basis” (this method has been recently derived and imple-

mented also by Yvan Notay).

Recursion (4.5) reveals the connection between the simpler approach and yet
another minimum residual approach. Let us set p, = A~ v,, P, = [p1,-.-,Pn)
Then, left-multiplying (4.5) by A~! yields

Tp = Tp—1+ AnpPn, an = (Tn_1, Apn), (4.9)

or, in matrix form,
Xn+1Ln+1,n = _PnDn

with Xp,+1 = [2o,...,2Zn]. This shows that p, € K,(A, 7o) is a direction vector:
it has the direction in which one moves from =, ; to z,. The step length o,
can be determined from one of the formulas on the right-hand side of (4.5) or
(4.9). Recall that it follows from the condition (r,_1,v,) = 0, which enforces
the minimization of ||r,|| on the line a — 7,_1 — av,. So, instead of computing
the coordinates ¢, of z, — zo with respect to the columns of [g1, Z,—_1] first, we
can directly update z,, from (4.9). However, this requires that we construct the
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direction vector p, (or a scalar multiple of it). Now, note that left-multiplying
(4.4) by A~! yields

[ql, Zn,]_] = PnUn (410)

If Uy, is known from (4.4), a recursion for p, can be extracted from this formula.
Note that it has the same recurrence coefficients (stored in the columns of Uy,)
that are used in the Gram-Schmidt process in (4.4); so the two recursions can be
run in the same loop. The obvious disadvantages of this approach is that we have
to store both all the direction vectors p, and all the original orthonormal basis
vectors v,, = Ap,. Moreover, any roundoff errors in U,, may have a strong effect
on P,. However, as we will see, this is the price we have to pay if we want to apply
the simple and convenient 2-term update formulas (4.5) and (4.9) and spend only
one matrix-vector (MV) product per step, namely Az, in (4.4) (or Av,_; in
(4.3) if Z,—1 = Vi,_1). The case Z,_1 = V,,_; of this method was proposed in
[84] under the name AT A—variant of GMRES. We will use here the terminology
update approach for this case and, more exactly, refined ORTHODIR for the
particular case with Z,_; = V,,_1, since, as we will see, it is a refined version
of the residual norm minimizing ORTHODIR algorithm [33, 110]. Likewise the
case with Z, ; = [”:—il, cee, ”::—:1”], which can be viewed as a refined version of
the ORTHOMIN algorithm [102, 110] (or the GCR method of Elman [30, 29],
and is identical to the GMRESR method [101] of van der Vorst and Vuik with the
choice uslo) = 7y,), will be referred to as refined ORTHOMIN (see our comments
below).

The refined ORTHODIR and ORTHOMIN algorithms with residual norm min-
imization started from the fact that the direction vectors p, of the minimum
residual method characterized by (4.2) are A7 A—orthonormal to each other: since
V. = AP,, we have PT?ATAP” = VTTVn = I. Because directions are only de-
termined up to a scalar multiple, we might give up the normalization of V,, and
choose instead PTAT AP, = V,I'V, to be a nonsingular diagonal matrix. So,
in analogy to (4.4), we can directly compute the columns of P, = [p1,...,pPn]
and U, from (4.10), and complement this by the explicit successive evaluation of
Vi = AP, (which, at the same time, serves for extending the Krylov subspace).
Again, we can view (4.10) as either an Arnoldi process for an AT A-orthogonal
basis if we choose Z, 1 = AP, 1, or as a Gram-Schmidt implementation of a
QR decomposition of [g1, Z, 1] with respect to the AT A-inner product if Z, ;
originates elsewhere. The case where Z,_; = AP,_1, ¢1 = 1o, and U, is unit
triangular corresponds to the original ORTHODIR algorithm [33, 110]; the case
where Z,,_1 = [r1,...,Tn—1], g1 = 70, and U, is unit triangular yields a version
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of the ORTHOMIN algorithm as proposed by Young and Jea [110], which was
called GCR by Elman [30]. Despite the popularity of the name GCR we will
mostly use the older name ORTHOMIN here, which also underlines the analogy
to ORTHODIR. Details can also be found in [8] (choosing B = ATAand C =T
there). The cases with short-term recurrences have been treated in detail in [59]
and [9].

However, what we have concealed in these descriptions is that we need a sec-
ond matrix-vector product, namely Av, ; in ORTHODIR and Ar, in OR-
THOMIN, to compute the coefficients of the orthogonal projection (i.e., of the
Gram-Schmidt algorithm). Due to the AT A—orthogonality, in ORTHODIR the
relevant projection of Ap,_; is pp, = (I — Po_1(AP,_1)T A)Ap,_1, which with
Vn_1 = AP, | may be written as p, = (/— P, 1V,> | A)v, 1. The new vector v,
could be instead of v, = (I — V,_1V,T ;)Av, 1 computed directly as v, = App,
which requires an extra MV. An analogue consideration holds for ORTHOMIN.
So, in this form, these algorithms are not competitive. Some remarks on their
stability were drawn in [47]; we will not cover these implementations here.

The well-known remedy suggested by Vinsome [102] and Eisenstadt, Elman, and
Schultz [29] consists in computing and storing both P, and V,,. This is achieved
by computing V,, with either the Arnoldi process (4.3) or with another QR de-
composition of A[rg,r1,...,7,_1] analogous to (4.4). But this means that up to
the scaling of the bases P,, V,, and Z,, we return to the refined ORTHODIR and
refined ORTHOMIN algorithms discussed above. The remaining difference be-
tween Vinsome’s ORTHOMIN and our refined ORTHOMIN is that we normalize
the residuals before orthogonalizing them, and that we use normalized direction
vectors. The analog is true for the difference between the usual implementation
of ORTHODIR and our refined ORTHODIR. The importance of normalizing the
residuals before the orthogonalization will be seen later.

The sections of this chapter are organized as follows. In Section 1 we analyze
first the maximum attainable accuracy of the simpler approach based on (4.3)

r (4.4) for v, and (4.7), (4.8) for z,,. Then we turn to the update approach
based on (4.3) or (4.4) for v,, (4.10) for p,, and (4.9), (4.5) for z, and r,.
To keep the text readable, we assume rounding errors only in selected, most
relevant parts of the computation. The bounds presented in Theorems 4.1 and
4.2 show that the conditioning of the matrix [g1, Z,—1] plays an important role
in the numerical stability of these schemes. Both theorems give bounds on the
maximum attainable accuracy measured by the normwise backward error. While
for the simpler approach this quantity does not depend on the conditioning of
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A, the bound for the update approach is proportional to x(A) (as we will show
in our constructed numerical example, the bound is attainable). However, the
dependence on k(A) is usually an overestimate; in practice, both the simpler and
update approaches behave almost equally for the same choice of the basis. This
is especially true for the relative errors of the computed approximate solutions,
where we give essentially the same upper bound. The situation is completely
analogous to results for the GMRES method [88] and the MINRES method [79]
given by Sleijpen, van der Vorst and Modersitzki in [92].

In Section 2 we derive particular results for two choices of the basis [g1, Zp—1].
First for [g1,Zn—1] = [g1,Vn—1] leading to Simpler GMRES by Walker and
Zhou [103] and to refined ORTHODIR. Then for [g1, Z,_1] = [”:—g”, U ”::—:H ,
which leads to SGMRES/RB and refined ORTHOMIN, respectively. It appears
that the two choices lead to truly different behavior in the condition number
of U,, which governs the stability of the considered schemes. Since all these
methods converge in a finite number of iterations, we fix the iteration index
n such that ro ¢ AK,_1(A4,ro), that is, the exact solution has not yet been
reached. Based on this we give conditions on the linear independence of the
basis [g1, Zp—1]- It is known that [rg,...,r,_1] can be rank deficient when the
GMRES method stagnates (the breakdown occurs in ORTHOMIN and hence
also in SGMRES/RB), while this does not happen for [g1, V,,—1] (Simpler GM-
RES and ORTHODIR are breakdown-free). On the other hand, we show that
while the choice [g1, Zn—1] = [g1, Vn—1] leads to inherently less numerically sta-
ble schemes, the second selection [g1,Z,-1] = [H:_EH”H::—:H] gives rise to
conditionally stable implementations provided we have some reasonable resid-
ual decrease. In particular, we show that the SGMRES/RB implementation is
conditionally backward stable. Our theoretical results are illustrated by selected

numerical experiments.

Throughout the text, we denote by || - || the Euclidean vector norm and the
induced matrix norm, and by ||-||7 the Frobenius norm. Moreover, for B € RV *™
(N > n) of rank n, 01(B) > 0,(B) > 0 are the extremal singular values of B,
and k(B) = 01(B)/0,(B) is the spectral condition number. By I we denote the
unit matrix of a suitable dimension, by ex (k= 1,2,...) its kth column, and we
let e =[1,...,1]T. We assume the standard model of finite precision arithmetic
with the unit roundoff u (see Higham [55] for details). In our bounds, instead
of distinguishing between several constants (which are in fact polynomials in N
and n that can differ from place to place), we use a generic constant c.
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1. Maximum attainable accuracy of simpler and update approaches

In this section we analyze the numerical stability of the simpler and update
approaches formulated in the previous section. In order to make our analysis
readable, we assume that only the computations performed in (4.4), (4.8) and
(4.10) are affected by rounding errors and that the computed Q-factor in the QR
factorization (4.4) is close to an orthonormal matrix and has beed computed in
a backward stable way. Hence we assume that the computed (orthogonal) factor
V,, and the upper triangular factor U, in the QR factorization (4.4) satisfy

Alg1, Zna] =ValUn + Fny, || Pl < cullAlllllgr, Zn-alll, (4.11)

and ||V;, — Vi,|| < cu, where V,, is the nearest orthonormal matrix satisfying
V,T V;, = I. For simplicity, we will not distinguish between V,, and V,, and assume
that V;, is exactly orthonormal. For details we refer to [15, 55]. From [106, 55]
we have for the computed solution £, of (4.8) that

(Un + AU,)E, = Dye, |AU,| < cu|Uy|, (4.12)

where the absolute value and inequalities are understood component-wise. The
approximation Z, to z is then computed as

Cfn =g + [ql, Zn,]_]fn. (413)

The crucial quantity for the analysis of the maximum attainable accuracy is the
gap between the true residual b — AZ,, of the computed approximation and the
updated residual r,, obtained from the update formula (4.5) describing the pro-
jection of the previous residual; see [47, 52]. In fact, once the true residual
becomes negligible compared to the true one (and in the algorithms considered
here it ultimately will), the gap equals the true residual divided by [|4||||Zx]],
which therefore can be thought of as the backward error of the ultimate approx-
imate solution &, (after suitable normalization). Here is our basic result on this
gap for the simpler approach.

THEOREM 4.1. In the stmpler approach, the gap between the true residual
b — Az, and the updated residual r, satisfies

b — AZy — 14| l|zoll
— < cuk(lqr, Zn-1]) | 1 + = .
1A[l[1Zx]] " 1Znll

PRrROOF. From (4.13) we have b — AZ,, = ro — Alq1, Zn_l]fn =rg — (VuUn +
F,)(U, + AU,) ' Dye, and (4.5) gives r, = rg — V,Dpe. Using the identity
I —Up(U, + AU,)t = AUL(U, + AU,) ! and the relation [g1, Zn 1](Un +
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AU,) 'Dpe = [q1, Zn,l]fn = %, — o We can express the gap between b — AZ,
and r,, as

b— Aty — 1 = (Viy — (VuUp + Fp)(Up + AU,) ) Dpe

VoAU, + F,)(Un + AU,) ' Dye

Vu AUy, + Fo)[a1, Zn-a]V[q1, Zni1](Un + AU,) ' Dye
= (VnAUn + Fn)[‘h; Zn—l]T(‘%n - 370)-

= (
_( (4.14)

Taking the norm, considering (4.11), and noting that the terms involving V,,AU,,
and Fj, can be subsumed into the generic constant ¢, we get

16— Ay — | < cullAlllllgr, Zn-1]llll[ar, Zn-1]"I(12nll + llzoll)- (4.5
Division by ||Al|||£x|| concludes the proof. O
In the following we analyze the maximum attainable accuracy of the update

approach. In accordance with (4.11) we assume that in finite precision arithmetic
the computed direction vectors satisfy

91, Zn-1] = PoUn + G, [|Gall < cul|Po||[|Un]|- (4.16)

Note that the norm of the matrix G,, cannot be bounded by cu||A||||[g1, Zn—1]]|
as it is in the case of the QR factorization (4.11). As in (4.9) we compute then
the approximate solution &, as

Bpn = Bp_1 + apbn. (4.17)

THEOREM 4.2. In the update approach, the gap between the true residual
b — Az, and the updated residual T, satisfies

||b—A§7n_7'n|| ||:170||
—— =" < cuk(A)k([q1, Zn-1]) | 1+ 7= ,
AN 2]

provided that n, = 1 — cuk(A)k([q1, Zrn-1]) > 0.

PROOF. Since &, = o + P,Dne = o + ([q1, Zn_1] — Grn)U, ' Dpe and r, =

ro — VnDre, we have that
b— Azp — 1 = (V — Alg1, Zn 1)U, V) Dpe + AG, U, ' Dye 418
= (=F, + AG,)U,; *Dpe (4.18)

due to (4.4). From (4.4) and (4.16), we get P, = A7V, + (A7'F, — G,)U;'.
Taking a norm we obtain || P,|| < [|A7Y| + cuk(A)||U, || + cu||Pnl|c(Uy). The
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norm of the residual matrix G, in (4.16) can hence be estimated as
1Gnll < cur(A)ll[gr, Zn-lll- (4.19)

Owing to (4.17), we have the identity U, 'D,e = U;lP,IPnDne = UglP,I(a”:n —
o), and ||U 2P| < 1.2 |lq1, Zn_1]T|| following from (4.16). Thus we obtain

1U, * Drell <t Mllgr, Zn-a]' (1 Znll + [lzol)), (4.20)
which together with (4.18), (4.19), and (4.11) proves the statement of the theo-
rem. O

The bound on the ultimate backward error given in Theorem 4.2 is worse that the
one of Theorem 4.1. We see that for the simpler approach the normwise backward
error is on the order of the roundoff unit, whereas for the update approach we
have an upper bound proportional to the condition number of A. In terms of
the residual norms, this leads to the bounds involving cux(A)x([g1, Zn—1]) and
cur?(A)&([q1, Zn—1]) terms for the simpler and update approach, respectively.

From Theorems 4.1 and 4.2, we can also estimate the ultimate level of the relative
2-norm of the error of both the simpler and update approach. However, as shown
below, it appears that the update approach leads to the approximate solution
with essentially the same accuracy level in the error as the simpler approach.
Similar phenomenon was also observed by Sleijpen, van der Vorst and Modersitzki
[92] in the symmetric case for GMRES and MINRES.

COROLLARY 4.3. The gap between the computed approrimate solutions Z,
and exact approzimations z, n both the simpler (r, = zo + [q1,Zn-1]tn)
and update (z, = Tp_1 + anpn) approaches can be bounded by
&l + [|zol|

el

|Zn — Zal
]l
provided that n, = 1 — cuk(A)k([q1, Zn—-1]) > 0.

< cuk(A)k([g1, Zn-1]) (4.21)

PrROOF. For the simpler approach, the result follows directly from Theorem
4.1. For the update approach, using (4.18) we have

Tp—En =2 —&p — A 'rp=(—A'F, +G,)U, 'Dye
and the statement now follows from (4.11), (4.19) and (4.20). O
The bound (4.21) from Corollary 4.3 depends on the quantity (||2. ||+ ||zol|)/||z]|

(or more precisely on ||Z, — zol|/||z]|), which is, however, strongly influenced
by the conditioning of the upper triangular matrix U,. As shown in Section 2,
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the matrix U, can be ill-conditioned for a particular case [g1, Zn—1] = [q1, Vn-1]

leading thus to inherently less numerically stable schemes, whereas the schemes

with [g1, Zn—1] = [HTOH e H:r ”] under some assumptions give rise to the well-

conditioned triangular matrix U,. In the following lemma we give bounds on
||Zn — zol| in terms of the singular values of the matrix U,.

LEMMA 4.4. In the simpler approach, we have
12 — ol < lllgr, Zn—alllllEnll < lla1, Zn—1]llll(Un + AUR) "' Daell,
and in the update approach,
12 — zoll < [|PaDnell < (1 + cus(A))ll[ar, Zn-alll|U, * Drell.
The norms of (U, + AU,) 'Dpe and U, D,e satisfy

II(U_nlJrAUn)*anEII } \/—Z”Tk 1]
1Ur " Drel|

(4.22)
< V2)|A7Y 77k Hlreal| ,
Al Z k([91, Zk-1])
provided that ny = 1 — cuk(A)k([g1, Zk—1]) >0 forallk=1,...,n
PROOF. Since el Dyexr = ap and |ag| = +/||rx_1]12 — [[7&l]? < V2||r%_1]|, we
have
|(Un + AUR) ™' Drel| < Z |(Un + AUR) ™' Dreg||
k=t (4.23)

n
[Ire—all
<2 ,
B ; 0k([Un + AUp]1:k,1:5)

where [U,+AUp)1:5,1:% denotes the principal k x k submatrix of U, +AU,. Owing
o (4.12), we can estimate the perturbation of [Up]1:x,1:5 = Uk as ||[AUn]1:k,1:5]| <
cul|Ug||. Perturbation theory of singular values shows that

0k([Un + AUpl1:k,1:5) > 0k (Us) — cu||Ug||
> ox(Algr, Zk-1]) — cul|Alllllg1, Zk—1]ll (4.24)
> on(A)or(lgr, Ze-1]) — cullAlllllgr, Zr-1]ll,

which, together with (4.23), concludes the proof of the first inequality. The
second inequality is proved analogously. O
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The first estimate given in (4.22), which involves the minimal singular values
of Uy (k =1,...,n), is quite sharp. However, the second estimate relating the
minimal singular values of Uy to those of [g1, Zx_1] can be a large overestimate,
as also observed in our numerical experiments in Section 2. Using Lemma 4.4
we can give the following estimates for the gap between the true and updated
residuals in the simpler and update approaches.

COROLLARY 4.5. In the simpler approach, the gap between the true restdual
||b — A%y || and the updated residual r, satisfies

— Az CUK w
Ib — Aznll < cur(A)lllgr, Zn- 1]“;1 w([a1) Zx 1)

In the update approach, the same quantity can be estimated as

- 77k ||7'k 1l
b— AZ,|| < cuk? ,
b= Az < cur?(A)llgs, Zn- 1||§: ot

Theorems 4.1 and 4.2 indicate that as soon as the backward error of the approx-
imate solution in the simpler approach gets below cux(A)&([g1, Zn—1]), then the
difference between the backward errors in the simpler and update approaches
may become visible and can be expected to be up to the order of x(A). Based on
our experience it is difficult to find an example where this difference is significant.
Similarly to Sleijpen, van der Vorst and Modersitzki [92], we use here a model ex-
ample, where A = G1 DGY € R00%100 with D = diag(10~%,2-107%,3,4,...,100)
and with G; and G; being Givens rotations over an angle of 7 in the (1, 10)-plane
and the (1,100)-plane, respectively; finally, b = e. The numerical experiments
were performed in MATLAB using double precision arithmetic (u ~ 107!°), and
the zero vector was chosen as the initial guess zg. In Figure 4.1 we have plot-
ted the normwise backward errors ||b — AZ,||/(||Al|||2=]]) (solid lines), relative
2-norms of the residuals ||b — AZ,||/||b|| (dashed lines) and the relative 2-norms
of the errors ||z — 2,||/||z|| (dash-dotted lines) for Simpler GMRES and refined
ORTHODIR, respectively. The same quantities for SGMRES/RB and refined
ORTHOMIN are reported in Figure 4.2. We see that the actual backward errors
and relative residual norms are close until where they stagnate: for refined OR-
THODIR and refined ORTHOMIN this happens approximately at a level close
to uk(A) for the backward errors and ux?(A) for the residuals, while for Simpler
GMRES and SGMRES/RB we have stagnation on the roundoff unit level. In
contrast, the 2-norms of the errors stagnate on the ux(A) level in all considered
schemes.
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backward error (Simpler GMRES)
backward error (Refined ORTHODIR) =
= = =relative residual (Simpler GMRES)
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FIGURE 4.1. The test problem solved by Simpler GMRES and
refined ORTHODIR.

2. Choice of basis and numerical stability

In this section we discuss the two main particular choices for the matrix Z, ;
leading to different algorithms for the simpler and update schemes. For the sake
of simplicity, we assume exact arithmetic here. First, we choose Z,_; = V,_1,
which leads to the Simpler GMRES method of Walker and Zhou [103] and to the
refined version of ORTHODIR by Young and Jea [110], respectively. Hence, we
choose {q1,v1,...,Vn_1} as a basis of K, (4,70). To be sure that such a choice
is adequate, we state the following simple lemma.

LEMMA 4.6. Letvy,...,vn_1 be an orthonormal basis of AK,_1(A,ro) and let
ro € AKn_1(A,r0). Then the vectors qi,vi,...,Un_1 form a basis of K, (A, 70).
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FIGURE 4.2. The test problem solved by SGMRES/RB and re-
fined ORTHOMIN.

Proor. It follows from the assumption ro ¢ AK,_1(A4,7o) implying that
q1 & AKn_1(A4, 1) = span{vy,...,up_1}. O

Note that if rg € AK, (4, 7o), then the condition (4.2) yields z, = A~'b, r,, =0,
and any implementation of a minimum residual method will terminate. Lemma
4.6 ensures that it makes sense to build an orthonormal basis V,, of AK,(4,ro)
by the successive orthogonalization of the columns of the matrix A[gy, V,,—1] via
(4.4). It reflects the fact that, for any initial residual 7, both Simpler GMRES
and ORTHODIR converge (in exact arithmetic) to the exact solution; see [110].
However, as observed by Liesen, Rozloznik and Strako$ [66], this choice of the
basis is not very suitable from the stability point of view. This shortcoming is
reflected by the unbounded growth of the condition number of g, V,,_1] discussed
next. The upper bound was also derived in the paper [103].
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THEOREM 4.7. Letrg € AK,,_1(A,70). Then the condition number of [q1, Vi—1]
satisfies

Iroll_
lIrn—1ll

[Iroll
[rnall =

k([q1, Vn-1]) £ 2

PROOF. Since 7,1 = (I — V1 V,T )7, it is easy to see that r,_; is the
residual of the least squares problem V,,_1y =~ rg. The statement follows from
Theorem 3.2 of [66]. O

The conditioning of [g1, V1] is thus related to the convergence of the method; in
particular, it is inversely proportional to the actual relative norm of the residual.
Hence, if the residual is small enough, Simpler GMRES and refined ORTHODIR
behave unstably. In practice, this difficulty can be counteracted by frequent
restarts.

Now we turn to the second choice, Z,_; = [H:—ill""’\l::—:ll]’ which leads to
SGMRES/RB (which we propose here as a more stable counterpart of Simpler
GMRES) and to the refined version of ORTHOMIN by Vinsome [102] known
also under the name GCR; see Eisenstat, Elman and Schultz [30, 29]. We have
[q1, Zn-1] = RnB,*', where B, = diag(||rol|,---,||7n—1]|), i.e., we choose scaled
residuals o, ...,r,_1 as the basis of K,,(4,7g). To be sure that such a choice is
adequate, we state the following result.

LeMMA 4.8. Let vy,...,up_1 be an orthonormal basis of AK,_1(A,r0) and
let 7o € AKp—1(A,7r0) and r, = (I — VkaT)ro, where Vi, = [v1,...,v], k =
1,2,...,n — 1. Then the following statements are equivalent:

(1) |lrell < llrg—1l| for allk=1,...,n —1,

(2) 7o0,...,mn—1 are linearly independent.

ProoF. Since g & AK,_1(A,70) = R(Vp_1), 7 #O0forallk =0,1,...,n—
1. It is clear that ||rg|| < ||rk—1|| if and only if (rg_1,vk) # 0. If that holds for all
k=1,...,n—1 the diagonal matrix D,,_; is nonsingular. Using the relation (4.6)
we find that Rn[Lnn—1,€n] = [Vac1Dn_1,7n—1]. Since r,_1 L V,_1, the matrix
[Van—1Dp_1,7n_1] has orthogonal nonzero columns, and hence its rank equals
n. Moreover, rank([Ln n_1,€n]) = n and thus rank(R,) = =, ie, ro,...,"n_1
are linearly independent. Conversely, from the same matrix relation we find
that if rg,...,7,_1 are linearly independent, then rank([V;,—1Dn—1,7n-1]) = n,
and hence D,,_; is nonsingular, which proves that ||rg|| < ||rg—1|| for all k& =
1,...,n—1.
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Therefore if the method does not stagnate, i.e., if the 2-norms of the residuals
70, - .., n—1 are strictly monotonously decreasing, then rq,...,r,_; are linearly
independent. In this case, we can build an orthonormal basis V;, of AK,(4,7o)
by the successive orthogonalization of the columns of AR,B,! via (4.4). If
ro € AKn_1(4,70), we have an exact solution of (4.1), and the method stops
with z,,_; = A~ 1b.

Several conditions for the non-stagnation of the minimum residual method have
been given in the literature. For example, Eisenstat, Elman and Schultz [29, 30]
show that GCR (and hence any minimum residual method) does not stagnate if
the symmetric part of A is positive definite, i.e., if the origin is not contained
in the field of values of A. See also Greenbaum and Strakos [50] for a different
proof, and Eiermann and Ernst [28]. Several other conditions can be found in
Simoncini and Szyld [91] and the references therein. If stagnation occurs, the
residuals are no longer linearly independent, and thus the method prematurely
breaks down. In particular, if 0 € F(A), choosing zo such that rqg € F(A) leads
to a breakdown in the first step. This was first pointed out by Young and Jea
[110] with a simple 2 x 2 example.

However, as shown in the following theorem, when the minimum residual method
does not stagnate, the columns of R, B, ! are a reasonable choice for the basis of
ICn (Av To ) .

THEOREM 4.9. Ifro & AK,_1(4, 7o), the condition number of R, B! satisfies

|re—al? + [I7s 12

n—1
_ |
1< k(RnB;') < vV/nyn, Yo = 4|1+ ) (4.25)
; [ EETE

PrOOF. From (4.6) it follows that

Rntl[Qn,n—ly en] = [Vn—lx H::—:in ) Qn,n—l = BnLn,n—ngil-

. Tn_1
Since [Vp_1, e

1”] is an orthonormal matrix, we have from Theorem 3.3.16 of
[58]

1= on([Vaet, 1221 < 0n(Ba By )@ty enll
< Un(RnBril)H[Qn,nfl,en]”F'-
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FIGURE 4.3. The test problem F'S1836 solved by Simpler GM-
RES and refined ORTHODIR.

The value of ||[@n,n—1,€n]||F can be directly computed as

[l a|l” + [|7&[?
k-1l = llrel*’

n—1
@1 enllle = |1+ 3
k=1

since aZ = ||rk_1||? — ||rx]|*. The statement follows using ||R, B, || < v/n. O

We define the quantity 7, in (4.25) as the stagnation factor. The conditioning
of R,B;! is thus related to the convergence of the method, but in contrast to
the conditioning of [g1,Vn—1], it is related to the intermediate decrease of the
residual norms, not to the residual decrease with respect to the initial residual.
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F1GURE 4.4. The test problem F'S1836 solved by Simpler GM-
RES and refined ORTHODIR.

We illustrate our theoretical results by a numerical example using the matrix
FS1836 (||All ~ 1.18 - 10°, ||A~}|| ~ 1.47 - 10?) obtained from the Matrix Market
[1] with the right-hand side b = Ae (see also the experiments in [66], where
the relative residual norms were reported). In Figures 4.3 and 4.5, we show
the normwise backward error ||b — AZ,||/(||Al|l|Zx|]) (solid lines), relative 2-
norms of the residuals ||b — AZ,||/||b]| (dashed lines) and relative 2-norms of
the error ||z — &,]||/||z|| (dotted lines with circles and crosses) for the choice
[91, Zn—1] = [g1,Vn—1] that corresponds to Simpler GMRES and refined OR-
THODIR, and for [g1, Zp—1] = [H:—gll’ . H::—:II] corresponding to SGMRES/RB
and refined ORTHOMIN, respectively. The quantities ux([g1, Zn—1]), us(Uy)
and uk(A) are depicted by solid, dashed and dash-dotted lines in Figures 4.4 and
4.6. We see that the backward errors, the residual norms, and the error norms are
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FIGURE 4.5. The test problem FS1836 solved by SGMRES/RB
and refined ORTHOMIN.

almost identical for the simpler and update approaches. This can be observed in
most cases leading to practically negligible difference between Simpler GMRES
and refined ORTHODIR, and SGMRES/RB and refined ORTHOMIN, respec-
tively. Figure 4.3 illustrates our theoretical considerations and shows that, after
some initial reduction, the backward error (or residual norm) of Simpler GM-
RES and refined ORTHODIR may stagnate on a significantly higher level than
the backward error (or residual norm) of SGMRES/RB or refined ORTHOMIN,
which stagnates on a level proportional to the roundoff unit, as shown in Figure
4.5. Due to Theorem 4.7, after some initial phase, the norms of errors (as well as
residuals) start to diverge in Simpler GMRES and refined ORTHODIR, while for
SGMRES/RB and refined ORTHOMIN we have a stagnation on a level approx-
imately proportional to ux(A). The difference is clearly caused by the choice of
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FIGURE 4.6. The test problem FS1836 solved by SGMRES/RB
and refined ORTHOMIN.

the basis [g1, Zrn—1], which has an effect on the conditioning of the matrix U,.
We see that [g1,Zn_1] = [H:—g”, ceey H::—:II] remains well-conditioned up to the
very end of the iteration process, while the conditioning of [g;, V,,—1] is linked to
the convergence of Simpler GMRES and may lead to a very ill-conditioned tri-
angular matrix U,. Consequently the approximate solution %, computed from
(4.8) becomes inaccurate and its error starts to diverge. Since the stagnation
factor v, = 55.8 (for n = 50), the matrix U,, remains well-conditioned, and this

problem does not occur in the SGMRES/RB method.






CHAPTER 5
Conclusions and open questions

In this thesis we studied the numerical behavior of several iterative methods for
the solution of systems of linear algebraic equations. In Chapter 3 we looked at
the numerical behavior of certain inexact saddle point solvers. In particular, for
several mathematically equivalent implementations, we studied the influence of
inexact solution of inner systems and estimate their maximum attainable accu-
racy. When considering the outer iteration process, our analysis lead to results
similar to ones which can be obtained assuming exact arithmetic. The situa-
tion was different, when we looked at the residuals in the saddle point system.
We showed that some implementations lead ultimately to residuals on the level
of roundoff unit independently on the fact that the inner systems were solved
inexactly. Indeed, our results confirm that the generic and actually the cheap-
est implementations deliver the approximate solutions, which satisfy either the
second or the first block equation to the working accuracy. In addition, the
implementations with corrected direct substitution are also very attractive. We
gave a theoretical explanation for the behavior which was probably observed or
is already tacitly known. The implementations that we point out as optimal are
actually those, which are widely used and suggested in applications. It appears
that, when measured in terms of the errors, the maximum attainable accuracy
level is similar for all considered implementations and it is proportional to the
backward error tolerance of inner systems.

In Chapter 4 we studied the numerical behavior of several minimum residual
methods mathematically equivalent to GMRES. Two general formulations were
analyzed: the simpler approach that does not require an upper Hessenberg fac-
torization and the update approach which is based on generating a sequence of
appropriately computed direction vectors. It was shown that for the simpler ap-
proach our analysis leads to an upper bound for the backward error proportional
to the roundoff unit, whereas for the update approach the same quantity can be
bounded by a term proportional to the condition number of A. Although our
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analysis suggests that there maybe a difference between both approaches up to
the order of k(A), in practice they behave very similarly and it is very difficult to
find an example with a significant difference in the limiting accuracy. Moreover,
when looking at the errors, we note that both approaches lead essentially to the
same accuracy of the computed approximate solutions.

We indicated that the choice of the basis [g1, Z,—1] is the most important issue
for the stability of the considered schemes. Owur analysis supports the well-
known fact that, even when implemented with the best possible orthogonalization
techniques, Simpler GMRES and ORTHODIR are inherently less stable due to
the choice [g1, Zn—1] = [g1,Vn—1]. The situation becomes significantly better,
when we use the residual basis [g1, Z,_1] = [”:—g”, RV ”::—:H] This choice leads to
the popular GCR, ORTHOMIN and GMRESR methods, which are widely used in
applications. Assuming some reasonable residual decrease (which happens almost
always in finite precision arithmetic), we showed that this scheme is quite efficient
and proposed a conditionally backward stable variant (called SGMRES/RB here).
Our theoretical results in a sense justify the use of the GCR method in practical
computations.

There are several open problems connected to the topic of this thesis.

Various stopping criteria for inner systems. The analysis in Chapter
3 is based on the backward error stopping criterion in inner systems. It could
be interesting to compare other stopping criteria based, e.g., on the relative
residuals or estimates of energy errors in the Schur complement method. The
relation between the A-norm of z — z, and the BT A~ B-norm of y — y, can lead
to a stopping criterion based on the energy norm of z — zx. However, it is not
completely clear how to do this, when the systems with A are not solved exactly.

Corrected substitution in stationary iterative methods. We saw in
Chapter 3 that for the Schur complement reduction and null-space projection
methods, it is more preferable to update the approximation zx; using the cor-
rected direct substitution than to compute it directly. Analogous results hold
also for stationary iterative methods. Consider the system Az = b with a non-
singular matrix A and its splitting A = M — N, where M is also nonsingular.
A stationary iterative method then generates the approximations to z satisfying
Mzy1 = Nz + b starting from some zo. Higham and Knight [56] analyzed
this implementation in finite precision arithmetic, and they showed that the
limiting accuracy depends on the maximum relative norm of the approximate
solutions z; (¢ = 0,...,k). However, it is much more beneficial, in such a case,
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rather than compute zg; = Mfl(N:c;c + b), to use the “corrected” formula
Tet1 = Tk + M~ry, where r, = b — Az;. We saw in Section 1.4 of Chapter 3
that the final level of the residual f — AZ; — By does not depend on the max-
imum norm of the iterates during the whole iteration process but only on those
in a few last iterations. The similar observation can be made also in the case of
the “corrected” implementation of the stationary iteration, and the idea can be
also extended to two-stage iterative methods, e.g., when applying the SIMPLE
method for the solution of fluid flow problems (see, e.g., [81]).

Backward error analysis of segregated methods. In Section 4 of Chap-
ter 3 we interpret the inexact solution computed with the Schur complement
reduction method (using the generic update) as an exact solution of the saddle
point problem with a perturbed upper-left matrix block. The similar backward
error analysis should be performed also for other implementations of the Schur
complement reduction method and for the null-space projection method. More-
over, the analysis of the null-space projection should consider also a particular
projection method for computing the direction vectors.

Preconditioned residual basis. In Chapter 4, we did not consider the
issue of preconditioning or, we assume, that the system Az = b is already pre-
conditioned. It does not make much sense to precondition the methods using
the basis [g1, V1] such as Simpler GMRES or ORTHODIR due to their inher-
ent instability. One can restart the method to overcome this problem, but note
that the restart is necessary when the method becomes unstable, i.e., when it
converges fast! It seems reasonable to use (fixed or flexible) preconditioning in
the case of the residual basis (the preconditioned SGMRES/RB and GCR). It
is sometimes observed that the preconditioned residual basis of GCR (i.e., GM-
RESR [101]) is more preferable than, e.g., preconditioned GMRES (with a fixed
preconditioner) or flexible GMRES [86], which use the preconditioned orthonor-
mal basis of K, (A,79). Moreover, faster convergence could be observed when
using preconditioned residuals. This issue needs to be analyzed further.
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