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AbstraktJak je zn�amo, zaokrouhlova�� hyby a nep�resn�e �re�sen�� vnit�rn��h �uloh maj�� vliv nanumerik�e hov�an�� itera�n��h metod v aritmetie s kone�nou p�resnost��; oben�esni�zuj�� jejih ryhlost konvergene a ovliv�nuj�� kone�nou p�resnost spo�ten�eho�re�sen��. V pr�ai se zab�yv�ame anal�yzou maxim�aln�� dosa�ziteln�e p�resnosti n�ekter�yhitera�n��h metod pro �re�sen�� soustav line�arn��h algebraik�yh rovni.Dizertae je rozd�elena na dv�e ��asti. Prvn�� z nih obsahuje anal�yzu limitn�� p�resnostimetod krylovovsk�yh podprostor�u pro �re�sen�� rozs�ahl�yh �uloh sedlov�yh bod�u.Uva�zujeme dva typy segregovan�yh metod: metodu reduke na Shur�uv dopln�eka metodu projeke na nulov�y prostor mimodiagon�aln��ho bloku. Ukazuje se, �zev�yb�er vzore pro zp�etnou substitui m�a vliv na maxim�aln�� dosa�zitelnou p�resnostp�ribli�zn�eho �re�sen�� spo�ten�eho v aritmetie s kone�nou p�resnost��.Druh�a ��ast je v�enov�ana anal�yze numerik�eho hov�an�� n�ekter�yh metod mini-m�aln��h rezidu��, kter�e jsou matematiky ekvivalentn�� metod�e zoben�en�yh mi-nim�aln��h rezidu�� GMRES. Srovn�av�ame dva hlavn�� postupy: jeden, kde p�ribli�zn�e�re�sen�� je vypo�teno ze soustav s horn�� troj�uheln��kovou mati��, a jeden, kdeje p�ribli�zn�e �re�sen�� upravov�ano pomo�� jednoduh�eho rekurentn��ho vzore. Uka-zuje se, �ze v�yb�er b�aze m�a vliv na numerik�e hov�an�� v�ysledn�e implementae.Zat��mo metody Simpler GMRES a ORTHODIR jsou m�en�e stabiln�� d��ky �spatn�epodm��n�enosti zvolen�e b�aze, b�aze zkonstruovan�a z rezidu�� m�u�ze b�yt dob�re podm��-n�en�a, jestli�ze jsou normy rezidu�� dostate�n�e klesaj����. Tyto v�ysledky vedou k nov�eimplementai, kter�a je podm��n�en�e zp�etn�e stabiln��, a v jist�em smyslu i vysv�etluj��experiment�aln�e ov�e�ren�y fakt, �ze metoda GCR (ORTHOMIN) d�av�a v praktik�yhaplika��h velmi p�resn�e aproximae �re�sen��.Kl���ov�a slova. Rozs�ahl�e line�arn�� soustavy, metody krylovovsk�yh podprostor�u,�ulohy sedlov�eho bodu, metoda reduke na Shur�uv dopln�ek, metoda projeke nanulov�y prostor mimodiagon�aln��ho bloku, metody minim�aln��h rezidu��, numerik�astabilita, anal�yza zaokrouhlova��h hyb.iii





AbstratIt is known that inexat solution of inner systems and rounding errors a�etthe numerial behavior of iterative methods in �nite preision arithmeti. Inpartiular, they slow down their onvergene rate and have an e�et on theultimate auray of the omputed solution. Here we fous on the analysis of themaximum attainable auray of several iterative methods for solving systems oflinear algebrai equations.The thesis is divided into two parts. The �rst part is devoted to the analy-sis of Krylov subspae solvers applied to the large-sale saddle point problems.Two main representatives of segregated solution approahes are analyzed: theShur omplement redution method and the null-spae projetion method. Weshow that the hoie of the bak-substitution formula an onsiderably in�uenethe maximum attainable auray of approximate solutions omputed in �nitepreision arithmeti.In the seond part we analyze numerial behavior of several minimum residualmethods, whih are mathematially equivalent to the GMRES method. Twomain approahes are ompared: the approah, whih omputes the approximatesolution from an upper triangular system, and the approah where the approx-imate solutions are updated with a simple reursion formula. We show that adi�erent hoie of the basis an signi�antly in�uene the numerial behaviorof resulting implementation. While Simpler GMRES and ORTHODIR are lessstable due to ill-onditioning of hosen basis, the residual basis remains well-onditioned when we have a reasonable residual norm derease. These resultslead to a new implementation, whih is onditionally bakward stable, and ina sense explain an experimentally observed fat that the GCR (ORTHOMIN)method delivers in pratial omputations very aurate approximate solutionswhen it onverges fast enough without stagnation.v



Key words. large-sale linear systems, Krylov subspae methods, saddle pointproblems, Shur omplement redution, null-spae projetion method, minimumresidual methods, numerial stability, rounding error analysis.
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ÀííîòàöèÿÈçâåñòíî, ÷òî íåàêêóðàòíûå ðåøåíèÿ âíóòðåííèõ ïðîáëåì è îøèáêè îêðóã-ëåíèÿ îòðàæàþòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèþ èòåðàöèîííûõ ìåòîäîâ.Îíè êîíêðåòíî çàòîðìîçÿò èõ ñêîðîñòü ñõîäèìîñòè è îêàçûâàþò âëèÿíèåíà �èíàëüíóþ àêêóðàòíîñòü âû÷èñëåííîãî ðåøåíèÿ. Ìû çäåñü çàíèìàåìñÿàíàëèçîì ìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè íåêîòîðûõ èòåðàöèîí-íûõ ìåòîäîâ äëÿ ðåøåíèÿ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé.Ýòà äèññåðòàöèÿ ðàçäåëåíà íà äâå ÷àñòè. Ïåðâàÿ çàíèìàåòñÿ àíàëèçîì ëè-ìèòíîé àêêóðàòíîñòè ìåòîäîâ ïðîñòðàíñòâ Êðûëîâà äëÿ ðåøåíèÿ áîëüøèõñèñòåì ñåäåëüíûõ òî÷åê. Ìû ðàññìàòðèâàåì äâà òèïû ñåãðåãàöèîííûõ ìåòî-äîâ: ìåòîäîì ïðåîáðàçîâàíèÿ íà äîïîëíåíèå Øóðà è ìåòîäîì ïðîåêöèè íàÿäðî íåäèàãîíàëüíîãî áëîêà. Ìû óêàçûâàåì, ÷òî âûáîð �îðìóëû îáðàòíîéïîäñòàíîâêè îòðàæàåòñÿ íà ìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè ïðè-áëèçèòåëüíîãî ðåøåíèÿ âû÷èñëåííîãî â àðè�ìåòèêå ñ êîíå÷íîé òî÷íîñòüþ.Âòîðàÿ ÷àñòü ñîäåðæèò àíàëèç âû÷èñëèòåëüíîãî ïîâåäåíèÿ íåñêîëüêèõ ìå-òîäîâ ìèíèìàëüíûõ íåâÿçîê, êîòîðûå ìàòåìàòè÷åñêè ýêâèâàëåíòíûå ìåòî-äó ¾GMRES¿. Ìû ñðàâíèâàåì äâà ãëàâíûå ìåòîäû: îäèí, êîòîðûé îïðåäå-ëÿåò ïðèáëèæ¼ííîå ðåøåíèå èç ñèñòåìû ñ âåðõíåé òðåóãîëüíîé ìàòðèöîé,è îäèí, ãäå ïðèáëèæ¼ííîå ðåøåíèå êîððåêòèðîâàííîå ñ ïîìîùüþ ïðîñòîéðåêóððåíòíîé �îðìóëû. Ìû óêàçûâàåì, ÷òî âûáîð áàçû îòðàæàåòñÿ íà âû-÷èñëèòåëüíîì ïîâåäåíèè êîíå÷íîãî ìåòîäà. Ïîêà ìåòîäû ¾Simpler GMRES¿è ¾ORTHODIR¿ ìåíåå ñòàáèëüíûå çà ñ÷åò ïëîõî îáóñëîâëåííîé áàçû, áàçàíåâÿçîê ìîæåò áûòü õîðîøî îáóñëîâëåííàÿ, åñëè íîðìû íåâÿçîê äîñòàòî÷íîñíèæàþòñÿ. Ýòè ðåçóëüòàòû âåäóò ê íîâîìó ìåòîäó, êîòîðûé óñëîâíî îáðàò-íî ñòàáèëüíûé, è â îïðåäåëåííîì ñìûñëå îáúÿñíÿþò ýêñïåðèìåíòàëüíî óäî-ñòîâåðåííûé �àêò, ÷òî ìåòîä ¾GCR¿ (òàêæå èçâåñòíûé êàê ¾ORTHOMIN¿)äà¼ò â ïðàêòè÷åñêèõ àïïëèêàöèÿõ î÷åíü àêêóðàòíûå àïïðîêñèìàöèè ðåøå-íèÿ. vii
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CHAPTER 1
IntroductionConsider a system of linear algebrai equations in the formAx = b; (1.1)where A is an N�N nonsingular matrix and b is a right-hand side vetor. Usuallywe assume that A is large and sparse as it is, e.g., when A is a disrete repre-sentation of some partial di�erential operator. We are looking for the solution of(1.1) or for its suÆiently aurate approximation.The methods for solving (1.1) are usually lassi�ed as diret and iterative. Di-ret methods are mostly based on the suessive elimination of unknowns. Theyfatorize the system matrix (with suitably ordered rows or olumns), e.g., intothe produt of lower and upper triangular matries as in the Gaussian elimina-tion, or to the produt of an orthogonal and a triangular matrix as in the QRfatorization. The solution of (1.1) an be then found by solving systems withthese fators. In general, diret methods are well suited for dense and moderatelylarge systems. However, when solving a large sparse system, the number of newlyreated non-zero elements in both fators an heavily a�et the omputationaltime and storage requirements. In addition, even though diret methods deliverin theory the exat solution, there is no need for suh an auray in pratiedue to unertain data or disretization errors.Therefore, iterative methods beame very popular when solving sparse systems.An iterative method for the solution of (1.1) generates a sequene of approx-imations xk so that they ideally onverge to the exat solution. The systemmatrix need not to be expliitly stored. In eah iteration we need only to per-form a matrix-vetor multipliation. Moreover, the approximations onvergeoften monotonously (or almost monotonously) in some �xed norm and so we anstop the iteration proess when the approximation is aurate enough. However,the onvergene rate of iterative methods an be slow in general (depending onproperties of the system) and thus hybrid tehniques ombining the iterative and1



2 CHAPTER 1. INTRODUCTIONdiret approah, suh as preonditioned iterations, are widely used to make theproess more eÆient.In general, a solution method (no matter if a diret or iterative one) an beinterpreted as a solution of a sequene of subproblems whih are simpler to solve.In diret methods we an identify following subproblems: the fatorization ofthe system matrix and the solution of systems with omputed fators. In eahstep of an iterative method, we multiply a vetor by the system matrix andoptionally solve the system with a preonditioner whih an be also regardedas the subproblems solved repeatedly in the iteration loop. E.g., the matrix-vetor multipliation an involve the solution of an inner system as in the Shuromplement redution method whih we will disuss later.
1. The state of the artFrom now on we restrit ourselves to iterative methods. In pratie, the ompu-tations are a�eted by errors. They are never performed exatly due to roundingerrors and some of them are done inexatly with a presribed level of auray,espeially when omputations with the working auray ould be a waste oftime and resoures. E.g., matrix-vetor produts may involve a solution of innersystems, whih (being large and sparse) an be solved inexatly with anotheriterative method. Preonditioning an be also applied through some iterativeproess. Usually, a method is alled inexat if some involved subproblems aresolved only approximately even though we assume exat arithmeti. Roundingerrors an also onsiderably a�et the behavior of iterative methods. Sine thebehavior of inexat iterative methods and \exat" methods in �nite preisionarithmeti is similar, we will not stritly distinguish between the soures of er-rors and we will treat them ommonly in a uni�ed approah in the followingdisussion.When an inexatness is taken into aount, there are several important questionswhih need to be answered. In the following we give a brief overview of the stateof art in this �eld (inluding results in �nite preision arithmeti). Generally theinexatness introdued in an iterative method has two main e�ets:� The errors aused by inexat omputations are propagated throughoutthe iterative proess. Ideally the error propagation should be restrainedso that the loal errors are not magni�ed. There is a limit in the a-uray whih annot be exeeded and it is usually alled the maximumattainable (or limiting) auray.



1. THE STATE OF THE ART 3� The onvergene of an inexat iterative method an be delayed withrespet to the onvergene of the same method, where all omputationsare performed exatly. We may ask how many additional iterationsshould be performed suh that the same auray is attained as in theideal (exat) ase.In this thesis we fous on the limiting auray of inexat iterative methods. Thee�ets of inexat matrix-vetor multipliations in iterative methods (also referredas relaxed methods) on the maximum attainable auray were studied simulta-neously by van den Eshof and Sleijpen [97℄, and by Simonini and Szyld [90℄.Their analysis explains the experimental results of Bourass and Frayss�e [18℄ (thereport with an extensive experimental basis was published in 2000) who proposeda relaxation strategy for the auray of the omputed matrix-vetor produt.They have shown that to ahieve the presribed auray of the omputed solu-tion we need to ompute the matrix-vetor produt with the auray (measuredby the bakward error) inversely proportional to the atual residual norm. Thepapers [97, 90℄ provide the theoretial support for this strategy further devel-oped in [98℄. This topi is losely related to the exible preonditioning, see,e.g., [11, 43, 76, 90, 39℄. Here we try to adopt the bakward error analysis,widely used in the study of rounding errors, and we analyze the e�ets of in-exat omputations on the limiting auray of ertain iterative methods. Theomputations are performed in the presene of rounding errors while solutionsto ertain subproblems are done with more relaxed auray. We want to knowhow the inexatness of these inner systems together with the errors aused byroundo� a�et the behavior of the onsidered algorithms. It appears that somemeasures of the auray are ultimately on the level proportional to the unitroundo�, while other measures depend on the auray of inner systems.The problem of numerial stability of lassial iterative methods was addressedin several papers. The �rst analyzes arried out by Golub [40℄ and Lynn [69℄provide statistial and non-statistial results for the seond order Rihardsonand SOR method. The statistial error analysis of lassial iterative methodswas also performed by Arioli and Romani [5℄ larifying the relation between theonditioning of the preonditioned system matrix and the onvergene rate ofthe iterative method. In [56℄ Higham and Knight give the forward and bakwarderror analysis of a general one-step stationary method. Their analysis amongother things shows that the auray of the omputed solution strongly dependson the osillations of norms of the iterates whih is a ommon observation not



4 CHAPTER 1. INTRODUCTIONonly in the ase of lassial iterative methods. Moreover, even though the on-vergene is driven by the spetral radius of the iteration matrix, the limitingauray depends rather on the norm of its powers whih an be arbitrarily largein the early stage of the iterative proess. This was observed by Hammarling andWilkinson [53℄. The stability of lassial iterative methods was also analyzed byWo�zniakovski in [107, 108℄. He proved the forward stability of lassial meth-ods like Jaobi, Rihardson, Gauss-Seidel and SOR (for symmetri systems withthe Property A) and Chebyshev method (for symmetri positive de�nite sys-tems). However, the Chebyshev method appeared to be not normwise bakwardstable. In [41℄ Golub and Overton disuss the onvergene rate of the seondorder Rihardson and Chebyshev method. They onsider the inexat solutionof inner systems with uniformly bounded relative residuals. The auray ofthe omputed solution in the Chebyshev method is further analyzed by Giladi,Golub and Keller [37℄ who show the optimality of the uniform tolerane used in[41℄. When the system is solved by the lassial iterative method in eah stepwe must solve a simpler system indued by the splitting of the system matrix.However, these systems an be also solved iteratively. These methods, referredto as two-stage methods, were addressed, e.g., in [73, 64, 36℄.One of the most important result in the study of Krylov subspae methods is dueto Paige [77℄. He provides the analysis of the behavior of the symmetri Lanzosalgorithm [65℄ in the presene of rounding errors. This algorithm is losely relatedto the onjugate gradient method by Hestenes and Stiefel [54℄. It was �rst studiedby Wo�zniakowski [109℄ and Bollen [17℄. Wo�zniakowski shows that this methodonverges in �nite preision arithmeti at least linearly with the onvergene ratesimilar to the steepest desent method. However, his analysis does not reet thereality very well, sine the onvergene of the onjugate gradient method annotbe haraterized loally but its atual behavior depends on the whole iterationproess; see, e.g., [99, 68℄ and the referenes therein. The new insight into thisproblem was brought by Greenbaum [45℄ and further developed together withStrako�s [95, 49℄. It appears that the �nite preision Lanzos proess as well asthe �nite preision onjugate gradient method behave as their exat ounterpartsapplied to the matrix of (possibly muh) larger dimension with the eigenvalueslustered near the eigenvalues of the original matrix. This issue was furtherdisussed by Notay in [75℄.The analysis of limiting auray of some lasses of iterative methods an be per-formed in rather general setting without referring to any partiular method. The



2. ORGANIZATION OF THE THESIS 5methods based on the oupled two-term reurrenes were analyzed by Green-baum in [46, 47℄. The papers fous mainly on the onjugate gradient methodbut the analysis holds for a larger set of methods. In partiular, the results ofGreenbaum show that the highly irregular onvergene behavior (expressed bythe osillations of norms of iterates) observed in the ase of non-optimal iterativemethods (suh as BiCG [35℄ or CGS [93℄) an have an unfavorable e�et on thelimiting auray of the omputed solution. A similar phenomenon is mentionedalso by van der Vorst in [100℄, where the loss of auray is explained by osilla-tions of residual norms. On the other hand, suh osilations do not our (or anbe a priori bounded) in the ase of optimal methods suh as onjugate gradientsand onjugate residuals [94℄ applied to symmetri positive de�nite problems, orin the ase of residual minimizing methods (Orthodir [110℄, Orthomin [102℄,GCR [29℄) for general nonsymmetri systems. The numerial stability of various(equivalent) methods using short reurrenes was further studied by Gutknehtand Strako�s in [52℄ and by Sleijpen, van der Vorst and Modersitzki in [92℄. In[51℄ Gutkneht and Rozlo�zn��k disuss the e�et of residual smoothing on thelimiting auray.Finally we survey the results for the �nite preision behavior of nonsymmetriKrylov subspae methods with the full-term reurrenes suh as GMRES [88℄.The Householder implementation of the underlying Arnoldi proess [6℄ is quitestraightforward to analyze, see the paper by Drko�sov�a, Greenbaum, Rozlo�zn��kand Strako�s [27℄, and by Arioli and Fassino [4℄. This is due to the almost exatorthogonality of the omputed Krylov subspae basis. However, when we use theheaper modi�ed Gram-Shmidt implementation, the orthogonality is graduallylost during the iteration proess. The loss of orthogonality however goes handin hand with the derease of the bakward error of the atual omputed solutionas observed by Greenbaum, Rozlo�zn��k and Strako�s in [48℄ and further analyzedby Paige, Rozlo�zn��k and Strako�s in [80, 78℄. For more details see [67℄ and thereferenes therein.
2. Organization of the thesisThis thesis is divided into two main parts and is organized as follows. Chapter3, whih is based on the papers [61, 60℄, is devoted to the analysis of inexatmethods for solving saddle point problems of the form� A BBT 0��xy� = �f0� :



6 CHAPTER 1. INTRODUCTIONA brief overview on saddle point problems is presented in Chapter 2. We ana-lyze two segregated methods based on the transformation of the whole inde�niteproblem to a redued system with more preferable properties (smaller dimension,positive (semi)de�niteness). The redued system is solved by a suitable itera-tive method giving the approximations to one of the blok omponents of thesolution vetor (x or y). The remaining omponent is omputed via some bak-substitution formula. We onsider three di�erent but mathematially equivalentformulas. In eah iteration we have to solve either a nonsingular system with A,or a full rank least squares problem with B. Sine suh systems are not usuallysolved exatly, we assume here that they are solved with a presribed bakwarderror and study the e�et on the maximum attainable auray of the solutionmethod together with the e�ets of rounding errors. Suh inexat methods havebeen also onsidered in many papers but most of them analyzed the delay of on-vergene; see the referenes in Chapter 3. Here we provide a qualitative analysisof the maximum attainable auray of the omputed solution measured by trueresiduals in the saddle point system, by true residuals in redued systems andby forward errors of the omputed solutions. In addition, we show whih residu-als (and how) an be a�eted by the possibly irregular onvergene behavior inthe ase of the nonsymmetri blok A. The theoretial results are illustrated onnumerial experiments.Chapter 4, based on the paper [62℄, is devoted to the analysis of several residualminimizing Krylov subspae methods, whih are mathematially equivalent tothe GMRES method [88℄. In ontrast to GMRES, they, in the nth iteration,build an orthonormal basis of AKn(A; r0) instead of Kn(A; r0): Kn(A; r0) de-notes the nth Krylov subspae generated by the matrix A and the vetor r0.Two approahes are ompared: the approah, whih omputes the approximatesolution from an upper triangular system, and the approah, where the approx-imate solutions are updated step by step with a simple reursion formula. Weonsider a general basis to generate the orthonormal basis of AKn(A; r0), andit appears that, while Simpler GMRES and ORTHODIR are less stable due toill-onditioning of the hosen basis, the residual basis an be well-onditioned,when we have a reasonable residual norm derease. These results lead to a newimplementation, whih is onditionally bakward stable, and to the well knownGCR (ORTHOMIN) method, and in a sense explain an experimentally observedfat that GCR (ORTHOMIN) delivers very aurate approximate approximatesolutions in pratial appliations. The theoretial results are illustrated on nu-merial experiments.
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CHAPTER 2
Saddle point problemsThe solution of large-sale systems in the saddle point form attrated a lot ofattention in reent years. They appear in a large variety of appliations andmany solution methods were developed so far. The next hapter is devotedto the numerial stability analysis of ertain iterative methods for saddle pointsystems and, before we start, we give a short introdution into this �eld. For anexhaustive overview we refer to the paper by Benzi, Golub and Liesen [14℄.We onsider the large sparse system of linear algebrai equations in the blokform A�xy� � � A BBT �C��xy� = �fg� ; (2.1)where A 2 R

n�n, B 2 R
n�m and C 2 R

m�m. The solution and right-hand sidevetors are partitioned onsistently with respet to the partitioning of the systemmatrix. Let A and B are nonzero matries and furthermore we assume that theright-hand side is always hosen so that the system is onsistent.The properties of bloks A, B and C may vary depending on the appliation. Inthe following setion we mention several important examples of problems leadingto a saddle point system. Note that the system (2.1) has a symmetri blokstruture whih an be relaxed when solving so alled generalized saddle pointproblems. However, we do not onsider this ase here.
1. Applications leading to saddle point problemsSaddle point problems arise in a wide seletion of problems of omputationalsiene and engineering. When A is symmetri positive de�nite, B has a fullolumn rank and C = 0, we have the most ommon version of the saddle pointsystem � A BBT 0��xy� = �fg� ; (2.2)9



10 CHAPTER 2. SADDLE POINT PROBLEMSwhih appears, e.g., when solving ellipti seond order partial di�erential equa-tions by the mixed �nite element method [24℄ or quadrati programming prob-lems with linear onstraints [38, 74℄. The omponent x of the solution vetor(x; y) of (2.2) is the solution of the onstrained minimization problemminu2Rn J(u) = 12uTAu� fTu s.t. BTu = g: (2.3)The orresponding Lagrangian is de�ned asL(u; v) = J(u) + (BTu� g)T v 8u 2 R
n; 8v 2 R

m;where v is the vetor of Lagrange multipliers. The vetor (x; y) is the saddlepoint of L, L(x; v) � L(x; y) � L(u; y):The nonsymmetri blok A appears, e.g., when solving linearized Navier-Stokesequation via the sequene of Stokes and Oseen problems. If, in the mixed �niteelements, the approximation spaes do not ful�ll the LBB ondition, the stabi-lization should be applied leading to the nonzero symetri positive semide�nitematrix C [24, 32℄.Another important appliation of saddle point systems is the solution of linearleast squares problems. Let B be an n �m matrix of a full olumn rank andonsider �nd y s.t. kf �Byk = minv2Rm kf �Bvk:It is well-known [16, 42℄ that the solution of this problem is unique and it isharaterized by the orthogonality ondition x = f �By ? R(B) = N(BT )? forthe residual vetor x (where R(B) and N(BT ) denotes the range and null-spaeof the matrix B and BT , respetively). Hene we have x + By = f , BTx = 0leading to the system � I BBT 0��xy� = �f0� :In general, the system of the form (2.2) (with g = 0) orresponds to the weightedleast squares problem, where A�1-norm is minimized instead of the Eulideanone (when A is symmetri positive de�nite).
2. Properties of saddle point matricesHere we briey reall the basi properties of saddle point matries and relatetheir spetral and nonsingularity properties with respet to the properties ofpartiular bloks. We restrit ourselves to the symmetri ase but some results



2. PROPERTIES OF SADDLE POINT MATRICES 11an be extended to a more general setting. For a more omplete disussion, see[14℄.Theorem 2.1. Let A be a symmetri positive de�nite matrix with eigenval-ues ontained in the interval [�; �℄ and let B be of a full olumn rank withsingular values ontained in [�; �℄ with � > 0 and � > 0 and C is symmetripositive semide�nite. Then� A has n positive and m negative eigenvalues;� if C = 0, the eigenvalues of A are loalized as follows:�(A) � I� [ I+;whereI� � �12 ���q�2 + 4�2� ; 12 ���q�2 + 4�2�� ;I+ � ��; 12 ��+q�2 + 4�2�� :Proof. The saddle point matrix A an be fatorized as followsA = � I 0BTA�1 I��A 00 �BTA�1B � C��I A�1B0 I � :The �rst statement immediately follows from the Sylvester's law of inertia [57℄,sine the Shur omplement �BTA�1B � C is symmetri negative de�nite. Forthe proof of the seond statement, see [85℄. �The matrix A is inde�nite, sine it has both positive and negative eigenvalues.Solving highly inde�nite matries (with n �m) an lead to the slow onvergenewhen using Krylov subspae methods like MINRES [79℄, see [34℄. A simplemodi�ation of the system matrix in the formÂ � � A B�BT C� ;as observed, e.g., in [13, 34℄, leads to a nonsingular system with a spetrummoved to the right half-plane of the omplex plane but, however, for the prie oflosing the symmetry.The nonsingularity onditions are summarized in the following theorem (see [13℄).Theorem 2.2. Let A be symmetri nonnegative real (that is, 12 (A + AT ) ispositive semide�nite), B has a full olumn rank and let C be symmetripositive semide�nite. Then



12 CHAPTER 2. SADDLE POINT PROBLEMS� if A is nonsingular, then N(A) \N(BT ) = 0;� if N( 12 (A+AT )) \N(BT ) = 0, then A is nonsingular.Here 0 represents the null subspae of R
n. In partiular, if A is symmetripositive semide�nite, then A is nonsingular if and only if N(A)\N(BT ) = 0.

3. Solution methodsSolution methods for systems of the form (2.1) an be divided into two ategoriesalled oupled and segregated methods. Coupled methods solve the system (2.1)as a whole and therefore ompute both omponents x and y of the solution vetorat one. They an be both diret, e.g., using LDLT fatorization with 1� 1 and2 � 2 pivots, and iterative, e.g., using MINRES [79℄ in the symmetri ase. Onthe other hand, segregated methods transform the system (2.1) of the dimensionn+m to a redued system of a smaller dimension solving either for the omponentx or y. The remaining omponent is then found by the bak-substitution into(2.1). The redued systems an be also solved either diretly or iteratively. Theyan be hard to ompute expliitly, so the iterative approah is more preferablein many ases. Moreover, besides the smaller dimension, the redued systemsan be easier to solve than the whole saddle point system (e.g., the reduedsystem an be positive (semi)de�nite). Sometimes the border between oupledand segregated approahes is not sharp, sine oupled methods an be treated assegregated and vie versa. Here we review two main representatives of segregatedapproahes whih will be analyzed in the next hapter: the Shur omplementredution method and the null-spae projetion method. We will not disussother issues related to the topi and solution methods, espeially preonditioningof saddle point problems; see [14℄ for more information.
3.1. The Schur complement reduction method. Assume A is symmet-ri positive de�nite, B has a full olumn rank and C is symmetri positive semi-de�nite. Then Theorem 2.2 implies that the system (2.1) has a unique solution.It an be regarded as two matrix-vetor equations in the formAx+By = f; BTx� Cy = g: (2.4)Sine A is nonsingular, we an to eliminate x from the �rst equation, i.e., x anbe expressed as x = A�1(f �By); (2.5)and substituted into the seond equation. Then we obtain the systemSy = BTA�1f � g; S � BTA�1B + C (2.6)



3. SOLUTION METHODS 13with the Shur omplement matrix S (whih is, more preisely, the negativeShur omplement of A in A). The solution of an (n+m)-dimensional inde�niteproblem (2.1) is thus transformed to the solution of two systems of ordersm andn with symmetri positive de�nite matries. First, the system (2.6) is solvedfor y. It is not always preferable to ompute S diretly, sine, even though A issparse, S need not to be. Sometimes the elimination proess an be performedsuh that the sparsity is preserved [71℄. When (2.6) is solved iteratively, we needto ompute the produt with S whih involves the solution of a system withthe matrix A. The iterative method produes the sequene of approximationsyk (k = 0; 1; 2; : : :) onverging ideally to y. When the vetor y or an iterateyk is available, the orresponding approximation to x an be omputed by thesubstitution into (2.5).One of the most popular methods for solving saddle point systems based onthe Shur omplement redution is the Uzawa method [7℄. The algorithm is asfollows: hoose y0, then for k = 0; 1; 2; : : : do(solve Axk+1 = f �Byk;yk+1 = yk � �(g �BTxk+1 + Cyk):Here � > 0 is a relaxation parameter. Hene we an write the iteration in theform � A 0BT ���1I��xk+1yk+1� = �0 �B0 ���1I � C��xkyk�+�fg� :The diret omputation shows that the iteration matrix of the assoiated sta-tionary method is� A 0BT ���1I��1�0 �B0 ���1I � C� = �0 �A�1B0 I � �S� :Thus the Uzawa method onverges if and only if the spetral radius of I � �Sis stritly less than one. It is easy to see that the Uzawa method is based onthe Shur omplement method, sine it is nothing but the Rihardson iterationapplied to the Shur omplement system (2.6). On the other hand, the Uzawamethod an be regarded as a blok Gauss-Seidel method (with a regularizationin the blok (2; 2)) applied to the saddle point system (2.1).
3.2. The null-space projection method. The Shur omplement redu-tion relies on the e�etive solution of systems with the matrix A. Sometimes theappliation of A�1 is hard to ompute in whih ase the null-spae projetionmethod an be the method of hoie. Assume here that A is symmetri positive



14 CHAPTER 2. SADDLE POINT PROBLEMSde�nite on N(BT ), B has a full olumn rank and C = 0. The system (2.2) isthus by Theorem 2.2 uniquely solvable and an be expressed as two matrix-vetorequations Ax+By = f; BTx = g: (2.7)Let x0 be a partiular solution of the seond equation and Z 2 R
n�(n�m) be amatrix ontaining a basis of the null-spae of BT . Every suh solution lies in theaÆne spae x0+N(BT ) and hene has the form x = x0+ZxZ , where xZ 2 R

n�mare the oordinates of x�x0 in the null-spae basis Z. Substitution into the �rstequation of (2.4) and premultiplying by ZT gives the symmetri positive de�nitesystem ZTAZxZ = ZT (f �Ax0) (2.8)that is, the redued system of the order n � m for the omponents of x � x0in the basis of N(BT ). The system ZTAZ an be solved diretly or iteratively.When we have Z expliitly available (e.g., by the sparse QR fatorization) bothapproahes an be applied. However, when using an iterative method, it an beimplemented so that the matrix Z is kept only impliitly [44℄. We an view thesolution of (2.8) as the solution of a projeted system(I ��)A(I ��)x1 = (I ��)f; (2.9)where x1 = ZxZ and � is the orthogonal projetor onto R(B). The solutionomponent y an be then found via the solution of the least squares problemkf �Ax�Byk = minv2Rm kf �Ax�Bvk: (2.10)When (2.8) or (2.9) is solved iteratively produing the sequene of approximationsxk (k = 0; 1; 2; : : :), solving (2.10) gives an approximation yk to y with x replaedby xk.



CHAPTER 3
Limiting accuracy of segregated saddle point

solversWe want to solve a saddle point system whih is in fat the symmetri inde�nitesystem with 2� 2 blok struture� A BBT 0��xy� = �f0� ; (3.1)where the diagonal n� n blok A is symmetri positive de�nite and the n �mo�-diagonal blok B has full olumn rank. Saddle point problems have reentlyattrated a lot of attention and appear to be a time-ritial omponent in thesolution of large-sale problems in many appliations of omputational sieneand engineering. A large amount of work has been devoted to a wide seletionof solution tehniques varying from the fully diret approah, through the use ofiterative stationary or Krylov subspae methods, up to the ombination of di-ret and iterative tehniques inluding preonditioned iterative shemes. For anexellent survey on appliations, methods, and results on numerial solution ofsaddle point problems, we refer to [14℄ and numerous referenes therein (relevantreferenes will be given later in the text). Signi�antly less attention, however,has been paid so far to the numerial stability aspets. Here we onentrate onthe numerial behavior of shemes whih ompute separately the unknown ve-tors x and y: one of them is �rst obtained from a redued system of a smallerdimension, and, one it has been omputed, the other unknown is obtained bybak-substitution solving exatly or inexatly another redued problem. Themain representatives of suh a segregated approah are the Shur omplementredution method and the null-spae projetion method. We analyze suh algo-rithms whih an be interpreted as iterations for the redued system but omputethe approximate solutions xk and yk to both unknown vetors x and y simulta-neously. 15



16 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSThe Shur omplement redution method uses the blok fatorization in the form� A BBT 0� = � I 0BTA�1 I��A B0 �BTA�1B� ;where the matrix �BTA�1B is the Shur omplement of A in (3.1). Suh de-omposition leads to solving the resulting blok triangular system�A B0 �BTA�1B��xy� = � f�BTA�1f� ; (3.2)whih is nothing but a blok Gaussian elimination applied to the original system(3.1). The blok triangular system (3.2) is solved by omputing the unknown yfrom the symmetri positive de�nite Shur omplement systemBTA�1By = BTA�1f (3.3)of orderm and then by omputing the unknown x from a system of order n withthe symmetri positive de�nite matrix A. This approah leads to the expliitformula for the unknown vetor x = A�1(f � By). The null-spae projetionmethod is based on the projetion of the �rst blok equation in (3.1) onto the null-spae N(BT ) and onto its orthogonal omplement R(B), respetively. Aordingto the seond blok equation of (3.1) the unknown x belongs to N(BT ) andtherefore we get the blok triangular system�(I ��)A(I ��) 0BTA BTB��xy� = �(I ��)fBT f � ; (3.4)where � � B(BTB)�1BT denotes the orthogonal projetor onto R(B). Thistriangular system is solved by forward substitution, where we �rst ompute theunknown x from the projeted system(I ��)A(I ��)x = (I ��)f (3.5)of order n with the symmetri positive semi-de�nite matrix (I � �)A(I � �).One it has been omputed, the unknown y is obtained as y = By(f � Ax) bysolving the least squares problemkf �Ax�Byk = minv2Rm kf �Ax�Bvk; (3.6)where By denotes the Moore{Penrose pseudoinverse of B. The suess of algo-rithms for solving the blok triangular systems (3.2) or (3.4) depends on theavailability of good approximations to the inverse of the blok A or to the



17pseudoinverse of B, respetively. More preisely, one looks for a heap ap-proximate solution to the inner systems with the matrix A and/or to the as-soiated least squares problems with the matrix B. Numerous inexat shemeshave been used and analyzed, see, e.g., the analysis of inexat Uzawa algorithms[31, 22, 23, 12, 112℄, inexat null-spae methods [89, 105, 111℄, multilevel ormultigrid methods [21, 20, 111℄, domain deomposition methods [19℄, two-stageiterative proesses [73, 36℄ or inner-outer iterations [43℄. These papers ontainmainly the analysis of a onvergene delay aused by the inexat solution of innersystems or least squares problems.We onentrate on the question of what is the best auray we an get frominexat shemes solving either (3.2) or (3.4) when implemented in �nite preisionarithmeti. The fat that the inner solution tolerane strongly inuenes theauray of omputed iterates is known and was studied in several ontexts. Thegeneral framework for understanding inexat Krylov subspae methods has beendeveloped in [90℄ and [97℄. Assuming exat arithmeti, Simonini and Szyld [90℄and van den Eshof and Sleijpen [97℄ investigated the e�et of an approximatelyomputed matrix-vetor produt in every iteration on the ultimate auray ofseveral solvers and explained the suess of relaxation strategies for the innerauray tolerane from [18, 19, 39℄. The developed theory strongly exploitsthe partiular properties of an iterative method used for solving the assoiatedsystem. In the ontext of saddle point problems, this requires a deep analysis ofthe outer iteration sheme for solving the redued Shur omplement or projetedsystem (in partiular, we refer to [90, Setion 8℄).The e�ets of rounding errors in the Shur omplement redution method andthe null-spae projetion method have been studied, e.g., in [2, 3, 26, 70℄, wherethe maximum attainable auray of omputed approximate solutions by meansof residuals and errors is estimated depending on the user tolerane spei�ed inthe outer iteration. We analyze the inuene of the inexat solution of innersystems/least squares problems on the same quantities. Our approah is basedon a standard bakward analysis whih allows us to take into aount both theinexatness of the inner iteration loops as well as the aompanying roundingerrors that our in �nite preision arithmeti.The theory developed for the outer iteration proess is similar to the analysis ofGreenbaum in [47, 46℄ who estimated the gap between the true and reursivelyupdated residual for a general lass of iterative methods using oupled two-termreursions. The di�erene here is that every omputed approximate solution ofinner problem is interpreted as an exat solution of a perturbed problem indued



18 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSby the atual stopping riterion, while the theory of [47℄ onsidered only therounding errors assoiated with a �xed matrix-vetor multipliation. In ontrastto the theory of inexat Krylov methods [90, 97℄, the bounds for the true residualin the outer iteration loop are obtained without speifying the solver used forsolving the Shur omplement or the projeted Hessian system. It appears thatthe maximum attainable auray level in the outer proess is mainly given bythe inexatness of solving the inner problems and it is not further magni�ed bythe assoiated rounding errors. These results are thus similar to ones whih anbe obtained in exat arithmeti.The situation is di�erent when looking at the numerial behavior of residualsassoiated with the original saddle point system, whih desribe how auratelythe blok equations (3.1) are satis�ed. It is shown that the attainable au-ray of omputed approximate solutions then depends signi�antly on the bak-substitution formula used for omputing the remaining unknowns. Our resultsshow that, independent of the fat that the inner systems are solved inexatly,some bak-substitution shemes lead ultimately to residuals on the roundo� unitlevel. Indeed, our results on�rm that depending whih bak-substitution for-mula is used the omputed iterates may satisfy either the �rst or the seondblok equation to the working auray. We believe that suh results annotbe obtained using the exat arithmeti onsiderations and are of importane inappliations requiring aurate approximations (see e.g. [44, 38, 24℄). On theother hand, we agree that in many appliations the saddle point system omesfrom a disretization of ertain partial di�erential equations and muh lower a-uray is suÆient. In any ase, we give a theoretial explanation for the behaviorwhih was probably observed or is already impliitly known. However, we havenot found any expliit referenes to this issue. The implementations that wepoint out as optimal are atually those whih are widely used and suggested inappliations.The hapter is organized as follows. Setions 1 and 2 are devoted to the round-ing error analysis of the Shur omplement redution method and the null-spaeprojetion method, respetively. Eah setion is divided into �ve subsetions.In subsetions 1.1 and 2.1 we analyze the inuene of inexat solution of innersystems or least squares on the maximum attainable auray in the outer iter-ation proess for solving (3.2) or (3.4), and we estimate the ultimate norms ofthe true residuals �BTA�1f + BTA�1B�yk and (I � �)f � (I � �)A(I � �)�xk.In the onsequent three subsetions of Setions 1 and 2, we give bounds for theultimate norm of the true residuals f �A�xk � B�yk and �BT �xk. As we will see



1. SCHUR COMPLEMENT REDUCTION METHOD 19in subsetions 1.2{1.4 and 2.2{2.4, the limiting auray of these residuals maysigni�antly di�er for various bak-substitution formulas for omputing xk or yk,respetively. Subsetions 1.5 and 2.5 ontain forward analysis with the boundsfor the errors x� �xk and y� �yk. Throughout this hapter our theoretial resultsare illustrated on the model example taken from [83℄: we put n = 100; m = 20,and A = tridiag(1; 4; 1) 2 R
n�n; B = rand(n;m); f = rand(n; 1):The spetrum of A and singular values of B lie in the interval [2:001; 5:999℄ and[2:173; 7:170℄, respetively. Therefore the onditioning of A or B does not play animportant role in our experiments. For further disussion, we refer to subsetions1.5 and 2.5.For distintion, we denote quantities omputed in �nite preision arithmeti bybars. We assume that the usual rules of a well-designed oating-point arith-meti hold, and use oasionally the notation (�) for a omputed result of anexpression. The roundo� unit is denoted by u. In partiular, for a matrix-vetormultipliation the bound k(Ax)�Axk � O(u)kAkkxk is used and kxk denotesthe 2-norm of the vetor x; for a general matrix A we make use of the spe-tral norm kAk and the orresponding ondition number �(A) = kAk=�min(A),where �min(A) is the minimal singular value of A. For a symmetri positivede�nite matrix A, kxkA denotes the A-norm of the vetor x. Finally, we applythe O-notation when suitable.

1. Schur complement reduction methodIn this setion we will disuss algorithms whih ompute simultaneously approx-imations xk and yk to the unknowns x and y and ideally ful�ll the �rst blokequation of (3.1) Axk +Byk = f: (3.7)Our goal here is not to survey all existing shemes based on (3.7) but to ana-lyze the numerial behavior of three implementations whih use di�erent bak-substitution formulas for omputing the approximate solution xk. More preisely,without speifying any partiular method, we assume that we have omputed theapproximate solution yk+1 and the residual vetor r(y)k+1 using the reursionsyk+1 = yk + �kp(y)k ; (3.8)r(y)k+1 = r(y)k + �kBTA�1Bp(y)k (3.9)



20 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSwith r(y)0 = �BTA�1(f �By0). We will distinguish between the following threemathematially equivalent formulas:xk+1 = xk + �k(�A�1Bp(y)k ); (3.10)xk+1 = A�1(f �Byk+1); (3.11)xk+1 = xk + A�1(f �Axk �Byk+1): (3.12)The resulting shemes are summarized in Figure 3.1. These shemes have beenused and studied in the ontext of many appliations, inluding various las-sial Uzawa algorithms, two-level pressure orretion approah, or inner-outeriteration method for solving (3.1); see, e.g., the shemes with (3.10) in [82, 10℄,(3.11) in [31℄, or (3.12) in [22, 23, 12, 112℄, respetively. Beause the solves withmatrix A in formulas (3.10){(3.12) are expensive, these systems are in pratiesolved only approximately. Our analysis is based on the assumption that everysolution of a symmetri positive de�nite system with the matrix A is replaed byan approximate solution produed by an arbitrary method. The resulting vetoris then interpreted as an exat solution of the system with the same right-handside vetor but with a perturbed matrix A + �A. We always require that therelative norm of the perturbation is bounded as k�Ak � �kAk, where � repre-sents a bakward error assoiated with the omputed solution vetor. We willalways assume that the perturbation �A does not exeed the limitation given bythe distane of A to the nearest singular matrix and put restrition in the form��(A) � 1. It follows then from the standard perturbation analysis (see, e.g.,[55, 16℄) that k(A+�A)�1 �A�1k � ��(A)1� ��(A)kA�1k:Note that if � = O(u), then we have a bakward stable method for solvingthe positive de�nite system with A. In our numerial experiments, we solvethe systems with A inexatly using the onjugate gradient method or with theCholesky fatorization as indiated by the notation � = O(u).
1.1. The attainable accuracy in the Schur complement system. Inthis subsetion we look at the ultimate auray in the outer iteration proessby means of the true residual �BTA�1f + BTA�1B�yk. It is lear that if weperturb the Shur omplement system �BTA�1By = �BTA�1f to �BT (A +�A)�1Bŷ = �BTA�1f , where k�Ak � �kAk, then the residual assoiated with
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outer iterationy0; solve Ax0 = f �By0; r(y)0 = �BTx0
for k = 0; 1; 2; : : :yk+1 = yk + �kp(y)k

inner iteration / back-substitutionsolve Ap(x)k = �Bp(y)k
A) xk+1 = xk + �kp(x)k
B) solve Axk+1 = f �Byk+1
C) solve Auk = f �Axk �Byk+1; xk+1 = xk + ukr(y)k+1 = r(y)k � �kBT p(x)kFigure 3.1. Shur omplement redution: Three di�erentshemes for omputing the approximate solution xk+1 (alledin the text the updated approximate solution (A), the approx-imate solution omputed by a diret substitution (B), and theapproximate solution omputed by a orreted diret substitu-tion (C), respetively).ŷ an be bounded ask �BTA�1f +BTA�1Bŷk � ��(A)1� ��(A)kA�1kkBk2kŷk: (3.13)We see from (3.13) that there is a limitation to the auray of the residualobtained diretly from ŷ and its bound is proportional to � . Note that these on-siderations were made assuming exat arithmeti. The e�ets of rounding errorson the same quantity have been studied by Greenbaum [47℄, who onsidered ageneral lass of methods for solving the �xed system of linear equations using



22 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERStwo-term reursions given by (3.8) and (3.9). Using a similar approah we anextend these results and formulate the following theorem.Theorem 3.1. The gap between the true residual �BTA�1f+BTA�1B�yk andthe updated residual �r(y)k an be bounded ask �BTA�1f +BTA�1B�yk � �r(y)k k� [(2k + 1)�+O(u)℄�(A)1� ��(A) kA�1kkBk(kfk+kBk�Yk);where �Yk is de�ned as a maximum norm over all omputed approximatesolutions �Yk � maxi=0;:::;k k�yik.Proof. The initial residual �r(y)0 is omputed as �r(y)0 = �(BT �x0), where(A+�A0)�x0 = (f �By0), k�A0k � �kAk. It is easy to see that the statementholds for k = 0. The omputed approximate solution �yk+1 and the residual �r(y)k+1satisfy �yk+1 = �yk + ��k �p(y)k +�yk+1;k�yk+1k � uk�ykk+ (2u+ u2)k��k �p(y)k k; (3.14)�r(y)k+1 = �r(y)k � ��kBT �p(x)k +�r(y)k+1;k�r(y)k+1k � uk�r(y)k k+O(u)kBkk��k �p(x)k k; (3.15)where �p(x)k is the exat solution of the perturbed system(A+�Ak)�p(x)k = �(B�p(y)k ); k�Akk � �kAk: (3.16)Multiplying (3.14) by BTA�1B, substituting (3.16) into the reurrene (3.15),and subtrating these two equations we get the reurrene�BTA�1f +BTA�1B�yk+1 � �r(y)k+1 = �BTA�1f +BTA�1B�yk � �r(y)k���k(BT �p(x)k +BTA�1B�p(y)k ) +BTA�1B�yk ��r(y)k :The norm of the vetor ��k �p(y)k an be bounded as k��k �p(y)k k � k�yk+1k + k�ykk +k�yk+1k. This bound in ombination with (3.14) gives k�yk+1k � O(u) �Yk+1and k��k �p(y)k k � 3�Yk+1 whih also impliesk��k�p(x)k k � 3kA�1k1� ��(A)kBk�Yk+1: (3.17)



1. SCHUR COMPLEMENT REDUCTION METHOD 23Using (3.16), the bound on k��k�p(y)k k, and some elementary manipulation, we anestimate the term ��k(BT �p(x)k +BTA�1B�p(y)k )k��k(BT �p(x)k +BTA�1B�p(y)k )k � k��kBT [(A+�Ak)�1 �A�1℄(B�p(y)k )k+k��kBTA�1[(B�p(y)k )�B�p(y)k ℄k � [� +O(u)℄�(A)1� ��(A) kA�1kkBk2 �Yk+1:Considering (3.15), (3.17), and the indution assumption on the gap between�BTA�1f +BTA�1B�yk and �r(y)k (similar to the one used in [47℄), we obtain thebound for the error vetor �r(y)k+1 in the formk�r(y)k+1k � O(u)�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk+1)whih proves the statement of the theorem. �It is a well-known fat that the residual �r(y)k omputed reursively via (3.9) usuallyonverges far below O(u). Using this assumption we an obtain from the estimatefor the gap �BTA�1f +BTA�1B�yk� �r(y)k the estimate for the maximum attain-able auray of the true residual �BTA�1f +BTA�1B�yk itself. Summarizing,while the updated residual �r(y)k onverges to zero the true residual stagnates atthe level proportional to � . This is also illustrated in our numerial example,where the Shur omplement system �BTA�1By = �BTA�1f is solved usingthe steepest desent method with the initial approximation y0 set to zero. In Fig-ure 3.2 we show the relative norms of the true residual �BTA�1f +BTA�1B�yk(solid lines) and the updated residual �r(y)k (dashed lines).Similar to Greenbaum [47℄, we have shown that the gap between the true andupdated residual is proportional to the maximum norm of approximate solu-tions omputed during the whole iteration proess. Sine the Shur omplementsystem is symmetri negative de�nite, the norm of the error or residual on-verges monotonially for the most iterative methods like the steepest desent,the onjugate gradient, onjugate residual method, or other error/residual min-imizing methods or at least beomes orders of magnitude smaller than initialerror/residual without exeeding this limit. In suh ases, the quantity �Yk doesnot play an important role in the bound, and it an usually be replaed by ky0k ora small multiple of kyk. The situation is more ompliated when A is nonsingularand nonsymmetri; see [60℄.



24 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSAs we already noted, the main di�erene with respet to the analysis of Green-baum is that the oating-point multipliation with the �xed A�1 is replaed bythe step-dependent inexat solution of the system with A suh that it an beinterpreted as the exat appliation of the matrix (A+�Ak)�1, where the per-turbation matrix �Ak hanges at every step k. This onept is very similar tothe notion of inexat Krylov subspae methods (see [90℄ or [97℄), whih, on theother hand, does not take into aount the e�ets of rounding errors. The theoryof Greenbaum [47℄ ould be diretly applied only if we have at eah iterationk(BTA�1Bx)�BTA�1Bxk � O(u)kA�1kkBk2kxk. Sine in our idealized ase(BTA�1Bx) = BT (A+�Ak)�1Bx with k�Akk � �kAk, we have onlyk(BTA�1Bx)�BTA�1Bxk � ��(A)1� ��(A)kA�1kkBk2kxk:This bound ould be improved if we make a restrition and use a variable toler-ane for inner systems. If we require that every inner system is solved so thatthe relative residual of its omputed solution needs the tolerane � , then everyinexat appliation of the matrix BTA�1B would satisfy the inequalityk(BTA�1Bx)�BTA�1Bxk � �kA�1kkBk2kxk: (3.18)Then the whole outer proess (3.8) and (3.9) together with (3.18) ould be in-terpreted as a oating-point iteration with the roundo� unit equal to � . Theomputation in this \extended" arithmeti would lead tok �BTA�1f +BTA�1B�yk � �r(y)k k � O(� )1� ��(A)kA�1kkBk2(kyk+ �Yk):A thorough rounding analysis of the blok LU fatorization has been given in[26℄ and further developed in the saddle point ontext in [70℄. The approahwas quite onverse to the one used here. It is assumed that all inner systemsare solved in a bakward stable way and the auray of omputed approximatesolutions is estimated in terms of the user presribed tolerane for the outer Shuromplement system. Roughly speaking, the higher stopping tolerane � leads tothe higher attainable auray of the true residuals f �A�xk �B�yk and �BT �xk.This level is magni�ed by the quantities that play a similar role as the growthfator in the Gaussian elimination with partial pivoting (see, e.g., [55℄). On theother hand, the parameter � giving the threshold for the bakward error annotbe in�nitely small. Theorem 3.1 atually gives its lower bound. Dividing theright-hand side by kA�1kBk2k�yk we end up with � � O(u)�(A)=(1�O(u)�(A)).



1. SCHUR COMPLEMENT REDUCTION METHOD 25In the following we will estimate the residuals f � A�xk � B�yk and �BT �xk. Wewill show that these quantities depend on the atual implementation of the bak-substitution formula for xk and distinguish between three shemes (3.10), (3.11)and (3.12). No matter how we ompute the approximations �xk and �yk it holdsthat �BTA�1f +BTA�1B�yk = �BT �xk �BTA�1(f �A�xk �B�yk); (3.19)whih gives the relation between the residual �BTA�1f + BTA�1B�yk in theShur omplement system and the residuals f�A�xk�B�yk and�BT �xk assoiatedwith the saddle point system (3.1). Aording to Theorem 3.1, k � BTA�1f +BTA�1B�ykk is ultimately O(� ). Then it is lear from (3.19) that both f �A�xk � B�yk and �BT �xk annot be proportional to the roundo� unit u. We willshow that, depending on the hosen bak-substitution sheme, we an ensureeither that f � A�xk � B�yk = O(� ) with �BT �xk = O(u) (sheme A (3.10)), orthat f � A�xk � B�yk = O(u) with �BT �xk = O(� ) (sheme C (3.12)), while themost straightforward sheme B (3.11) leads to both f �A�xk �B�yk = O(� ) and�BT �xk = O(� ).
1.2. Scheme A: The updated approximate solution. In this subse-tion we analyze the generi update (3.10). It is lear that this sheme requiresonly one system solve with A per iteration. Indeed, we ompute only the di-retion vetor p(x)k = �A�1Bp(y)k , whih appears in the reurrene r(y)k+1 =r(y)k � �kBT p(x)k anyway. As we will see, in �nite preision arithmeti this algo-rithm guarantees that �BT �xk will ultimately reah O(u). This happens despitethe fat that the systems with the matrix blok A are omputed inexatly withthe parameter � frequently muh larger than O(u).Theorem 3.2. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(u)(kfk + kBk�Yk) + [(k + 1)� +O(u)℄kAk �Xk: (3.20)The gap between the residuals �BT �xk and �r(y)k an be estimated ask �BT �xk � �r(y)k k � O(u)kA�1kkBk(kfk+ kAk �Xk + kBk�Yk);where �Xk is now de�ned as a maximum norm over all omputed approximatesolutions �Xk � maxi=0;:::;k k�xik.
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Figure 3.2. Shur omplement redution method: The relativenorms of the true residual�BTA�1f+BTA�1�yk (solid lines) andthe updated residual �r(y)k (dashed lines) { the updated solutionsheme (3.10).Proof. The omputed approximate solution �xk+1 satis�es�xk+1 = �xk + ��k �p(x)k +�xk+1;k�xk+1k � uk�xkk+ (2u+ u2)k��k �p(x)k k: (3.21)Substituting reurrently (3.21) and (3.14) into the residualf �A�xk+1 �B�yk+1 = f �A�xk �B�yk � ��k(A�p(x)k +B�p(y)k )�A�xk+1 �B�yk+1;
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Figure 3.3. Shur omplement redution method: The normsof the true residual f�A�xk�B�yk { the updated solution sheme(3.10).we obtain the following bound:kf �A�xk �B�ykk � kf �A�x0 �By0k+ k�1Xi=0 �k��i(A�p(x)i +B�p(y)i )k+ kAkk�xi+1k+ kBkk�yi+1k� :Here we, in fat, reformulate the main result of Greenbaum [47, Theorem 2.2℄and heavily use the fat that the vetors �p(x)k satisfy the perturbed system (3.16).From Theorem 3.1 we have bounds k�yk+1k � O(u) �Yk+1 and k��k �p(y)k k � 3�Yk+1whih also imply the bound (3.17). Using all of these results we getk��k(A�p(x)k +B�p(y)k )k � k��k[(B�p(y)k )�B�p(y)k ℄k+ k�Akkk��k�p(x)k k:
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Figure 3.4. Shur omplement redution method: The rela-tive norms of the true residual �BT �xk (solid lines) and the re-ursively omputed residual �r(y)k (dashed lines) { the updatedsolution sheme (3.10).Further we use k�xk+1k � O(u) �Xk+1 and k��k�p(x)k k � 3 �Xk+1. Summarizing, weget the �rst result. The gap between �BT �xk+1 and �r(y)k+1 is equal to�BT �xk+1 � �r(y)k+1 = �BT �xk � �r(y)k �BT�xk+1 ��r(y)k+1and it leads to the expansion ontaining just the loal errors �xi+1, �yi+1 andthe initial gap �BT �x0 � �r(y)0�BT �xk � �r(y)k = �BT �x0 � �r(y)0 � k�1Xi=0 BT�xi+1 � k�1Xi=0 �r(y)k+1:
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Figure 3.5. Shur omplement redution method: The normsof the true residual f �A�xk�B�yk { the orreted diret substi-tution sheme (3.12).Taking norms, onsidering the bounds on k�xk+1k, k�yk+1k, (3.15), and therelation �r(y)0 = �(BT �x0), we get the seond result. �Corollary 3.3. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A) (kfk+ kBk�Yk):The gap between the residuals �BT �xk and �r(y)k an be estimated ask �BT �xk � �r(y)k k � O(u)�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk):
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Figure 3.6. Shur omplement redution method: The rela-tive norms of the true residual �BT �xk (solid lines) and thereursively omputed residual �r(y)k (dashed lines) { the diretsubstitution sheme (3.11).As we will see in the next subsetion, the bound for the gap �BT �xk � �r(y)k isonsiderably better than for the sheme (3.11). In ontrast to (3.24), it does notdepend on � . Provided that �r(y)k onverges to zero, the true residual �BT �xk willstagnate at the level proportional to u and the seond blok equation of (3.1)will be satis�ed to working auray.Figs. 3.3 and 3.4 show the norms of the true residual f � A�xk � B�yk and�BT �xk (solid lines), respetively, inluding the norms of the updated residual�r(y)k (dashed lines). The numerial results are in good agreement with Theorem3.2. The residual f � A�xk � B�yk is growing slightly due to the aumulation of
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Figure 3.7. Shur omplement redution method: The rela-tive error norms kx � �xkkA=kx � �x0kA (solid lines) and ky ��ykkBTA�1B=ky � y0kBTA�1B (dashed lines) { the updated solu-tion sheme (3.10).errors in inner systems Ap(x)k = �Bp(y)k but it essentially remains on the level pro-portional to � . The residual �BT �xk ultimately stagnates at O(u). The formula(3.10) is suitable whenever the seond blok equation of (3.1) must be satis�edaurately, no matter how small or big the inner tolerane � is.
1.3. Scheme B: The approximate solution computed by a direct

substitution. In this subsetion we assume that xk is omputed by the diretsubstitution (3.11). The omputed �xk then satis�es the equality(A +�Ak)�xk = (f �B�yk); k�Akk � �kAk: (3.22)



32 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSThe perturbation matries �Ak are di�erent from those de�ned in Subsetion1.1, but for simpliity we will keep the same notation. In the following we willshow that the residual �r(y)k is a good approximation for the residual �BT �xk,provided that they are above the level given by the bound for �BT �xk � �r(y)k .This quantity is now, however, proportional to � .Theorem 3.4. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(u)(kfk + kBkk�ykk) + �kAkk�xkk: (3.23)The gap between the residuals �BT �xk and �r(y)k an be bounded as follows:k �BT �xk � �r(y)k k � O(u)kA�1kkBk(kfk+ kBk�Yk)+ [(k + 3)� +O(u)℄�(A)kBk �Xk ; (3.24)where �Xk is de�ned as �Xk � maxi=0;:::;k�1fk�x0k; k�xkk; k��i�p(x)i kg.Proof. The �rst result follows from (3.22) and the relation for the trueresidual f �A�xk �B�yk = f �B�yk � (f �B�yk)��Ak�xk:For the gap between �BT �xk and �r(y)k we have the identity�BT �xk � �r(y)k = �BTA�1f +BTA�1B�yk � �r(y)k +BTA�1�Ak�xk+BTA�1[(f �B�yk)� (f �B�yk)℄: (3.25)The statement of Theorem 3.1 together with (3.25) gives the seond result (3.24).
�Corollary 3.5. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A) (kfk+ kBkk�ykk):The gap between the residuals �BT �xk and �r(y)k an be bounded as followsk �BT �xk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk): (3.26)Indeed while the residual �r(y)k onverges ultimately below O(u), the residual�BT �xk will remain proportional to � . The norm of f � A�xk � B�yk is unon-ditionally bounded by the term proportional to � dominating other terms in(3.23).



1. SCHUR COMPLEMENT REDUCTION METHOD 33Figure 3.6 shows the norms of �BT �xk (solid lines) and �r(y)k (dashed lines). Theresidual f �A�xk �B�yk behaves similarly to that of the sheme (3.10) shown inplot 3.3. The residual f �A�xk�B�yk remains almost onstant sine it is nothingbut the residual of the system Axk = f � Byk solved in eah iteration with theuniform auray.
1.4. Scheme C: The approximate solution computed with a cor-

rected direct substitution. The third bak-substitution formula (3.12) anbe derived by a orretion of the sheme (3.11) and requires two system solveswith A. In this subsetion we show that its numerial behavior is very similarto the behavior of lassial nonstationary iterative methods desribed and ana-lyzed by Higham [55℄. We prove that under ertain onditions the true residualf � A�xk � B�yk ultimately onverges to the level proportional to u, whih issigni�antly smaller than those for the previous two shemes.Theorem 3.6. Assuming for suÆiently large k with k�yk+1��ykk � O(u) �Yk+1,there exists a step k0 suh that the true residual f � A�xk � B�yk is boundedby kf �A�xk �B�ykk � O(u)(kfk + kAk �Xk + kBk�Yk) (3.27)for all steps k � k0. The gap between �BT �xk and �r(y)k an be estimated asfollows: k �BT �xk � �r(y)k k � O(u)kA�1kkBk(kfk+ kBk�Yk)+ [(k + 3)� + O(u)℄�(A)kBk �Xk:The quantity �Xk is here de�ned as �Xk � maxi=0;:::;k�1fk�x0k; k�xkk; k��i�p(x)i kg.Proof. The omputed approximate solution �xk+1 satis�es�xk+1 = �xk + �uk +�xk+1; k�xk+1k � u(k�xkk+ k�ukk); (3.28)where the vetor �uk is the exat solution of the system(A+�Ak+1)�uk = (f �A�xk � B�yk+1); k�Ak+1k � �kAk: (3.29)The residual f �A�xk+1 �B�yk+1 an be expressed using (3.28) and (3.29) asf �A�xk+1 �B�yk+1 = �Ak+1�uk �A�xk+1+ (f �A�xk �B�yk+1)� (f �A�xk �B�yk+1)= Gk+1(f �A�xk �B�yk)�Gk+1B(��k �p(y)k ) + hk+1; (3.30)



34 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSwhere Gk+1 � �Ak+1(A + �Ak+1)�1 and hk+1 � (I + Gk+1)[(f � A�xk �B�yk+1)� (f �A�xk �B�yk+1)℄� A�xk+1 �Gk+1B�yk+1. From a reursive useof the formula (3.30) we obtainf �A�xk �B�yk = Gk � � �G1(f �A�x0 �By0)� k�1Xi=0 Gk � � �Gi+2(Gi+1B ��i�p(y)i � hi+1):Taking norms, using the relation k��i�p(y)i k � k�yi+1� �yik+k�yi+1k and k�Aik ��kAk we obtain the uniform bound kGik � ��(A)[1 � ��(A)℄�1 < 1. This leadsto the inequalitykf �A�xk �B�ykk � � ��(A)1� ��(A)�k kf �A�x0 �By0k+ k�1Xi=0 � ��(A)1� ��(A)�k�i kBkk�yi+1 � �yik+ k maxi=0;:::;k�1 khi+1k+ k maxi=0;:::;k�1 kBkk�yi+1k: (3.31)For the vetor hk+1 it further follows thatkhk+1k � O(u)[kfk+ kAk(k�xk+1k+ k�xkk) + kBk�Yk+1℄:It is easy to see that for suÆiently large k the �rst term on the right-hand sideof (3.31) will derease far below O(u), while the seond term will be at mostO(u)kBk�Yk+1 for all steps k starting from some index k0. Summarizing, forsuÆiently large k � k0 we have the boundkf � A�xk �B�ykk � O(u)[kfk+ kAk(k�xk+1k+ k�xkk) + kBk�Yk℄:The seond statement an be proved onsidering�BT �xk+1 � �r(y)k+1 = �BTA�1f +BTA�1B�yk+1 � �r(y)k+1�BT [(A+�Ak+1)�1 �A�1℄(f �A�xk �B�yk+1)�BTA�1[(f �A�xk �B�yk+1)� (f �A�xk �B�yk+1)℄:The �rst term on the right-hand side an be estimated using Theorem 3.1. Basedon (3.29) we havek[(A+�Ak+1)�1 �A�1℄(f �A�xk �B�yk+1)k � ��(A)1� ��(A)k�ukkwhih together with the bound on k�ukk ompletes the proof. �



1. SCHUR COMPLEMENT REDUCTION METHOD 35Corollary 3.7. Assuming for suÆiently large k with k�yk+1��ykk � O(u) �Yk+1,there exists a step k0 suh that the true residual f � A�xk � B�yk is boundedby kf �A�xk �B�ykk � O(u)�(A)1� ��(A) (kfk+ kBk�Y (k0)k )for all steps k � k0. The quantity �Y (k0)k is de�ned as �Y (k0)k � maxi=k0;:::;k k�yik.The gap between �BT �xk and �r(y)k an be estimated as followsk �BT �xk � �r(y)k k � O(u)�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk):In Theorem 3.6, we assume that �yk ultimately stagnate so that k�yk+1 � �ykk �O(u) �Yk+1 for suÆiently large k � k0. It appears that this ondition does notrepresent a serious restrition. Using (3.14) we have k�yk+1 � �ykk � k��k�p(y)k k +O(u) �Yk+1. We will show that the norm of ��k �p(y)k is muh smaller than u forlarge k, i.e., we an absorb it into the term O(u) �Yk+1. Denoting Ŝk � BT (A +�Ak)�1B, using (3.15) and (3.16) we have the boundk��k �p(y)k k � 2kŜ�1k k(k�r(y)k+1k+ k�r(y)k k) +O(u)kŜ�1k kk(A+�Ak)�1kkBk2k��k�p(y)k k:Provided that O(u)kŜ�1k kk(A+�Ak)�1kkBk2 < 1, we obtaink��k�p(y)k k � 2kŜ�1k k(k�r(y)k+1k+ k�r(y)k k)1�O(u)kŜ�1k kk(A+�Ak)�1kkBk2 :Sine the norms of updated residuals derease far below the roundo� unit, theassumption on k�yk+1 � �ykk will be true for suÆiently large k. Note thatO(u)kŜ�1k kk(A + �Ak)�1kkBk2 < 1 is nothing but the restrited assumptionof numerial nonsingularity of the Shur omplement matrix BTA�1B.The bound (3.27) is signi�antly better than its ounterparts (3.20) and (3.23).Theorem 3.6 desribes that the residual f � A�xk � B�yk will ultimately reahthe roundo� unit level provided that the matrix GkGk�1 � � �G1 onverges to zerofor k ! 1. As soon as iterates �yk start to stagnate at their limiting auraylevel, the rate of onvergene of this nonstationary iteration proess is boundedby the fator ��(A)[1 � ��(A)℄�1. The behavior of �BT �xk is similar to that ofsheme (3.11). Indeed, when �r(y)k onverges ultimately below O(u), the residual�BT �xk remains proportional to � . Figure 3.5 shows the norms of the residualf � A�xk � B�yk. The plot for �BT �xk (not reported) is similar to the plot (d)for the sheme (3.11). It is lear that in our well-onditioned ase the stationary



36 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSmethod onverges very fast and the rate of derease of f�A�xk�B�yk is essentiallyomparable to the onvergene rate of the outer iteration.
1.5. Forward error analysis. In this subsetion we estimate the maximumattainable auray in terms of the errors x� �xk and y � �yk. First we formulatethe bounds in the 2-norm, then in the A-norm of the error x� �xk, and then inthe BTA�1B-norm of the error y � �yk. The errors x � �xk and y � �yk, and theresiduals f �A�xk �B�yk and �BT �xk satisfy� A BBT 0��x� �xky � �yk� = �f �A�xk �B�yk�BT �xk � : (3.32)We have the expliit expression for the inverse of the saddle point matrix� A BBT 0��1 = � (I ��)A�1 ��B(BTB)�1�(BTB)�1BT�T �(BTA�1B)�1� ;where � � A�1B(BTA�1B)�1BT represents the oblique projetor onto R(B)along N(BT ). Considering (3.32), the inequalitiesk(I ��)A�1k = kA�1=2(I �A�1=2B(BTA�1B)�1BTA�1=2)A�1=2k � ��1min(A)andk�BT (BTB)�1k = kA�1=2(A�1=2B(BTA�1B)�1A�1=2)A1=2B(BTB)�1k� �1=2(A)��1min(B);(note that A�1=2B(BTA�1B)BTA�1=2 is the orthogonal projetor onto the rangeof R(A�1=2B), we obtain the boundskx� �xkk � 1kf �A�xk �B�ykk+ 2k �BT �xkk; (3.33)ky � �ykk � 2kf �A�xk �B�ykk+ 3k �BT �xkk; (3.34)where 1 � ��1min(A), 2 � �1=2(A)��1min(B), and 3 � ��1min(BTA�1B) are on-stants independent of the iteration step k. It is lear from (3.33), (3.34), andTheorems 3.2, 3.4 and 3.6 that kx� �xkk and ky � �ykk will be O(� ) for all bak-substitution shemes. In ontrast to our numerial example, the saddle pointsystems that arise in pratie an be ill-onditioned. In suh ases the onstants1, 2, and 3 may play an important role.In exat arithmeti we have kx�xkkA = ky�ykkBTA�1B . Sine in �nite preisionarithmeti the residual f �A�xk �B�yk is no longer zero, instead of this identitywe get jkx� �xkkA � ky � �ykkBTA�1B j � 1=21 kf �A�xk �B�ykk: (3.35)



1. SCHUR COMPLEMENT REDUCTION METHOD 37We an also formulate the proposition, whih gives bounds for the errors in termsof the residuals f �A�xk �B�yk and �BTA�1f +BTA�1B�yk.Theorem 3.8. The A-norm of the error x � �xk and the BTA�1B-norm ofthe error y � �yk an be bounded askx� �xkkA � 1=21 kf �A�xk �B�ykk+ 1=23 k �BTA�1f +BTA�1B�ykk; (3.36)ky � �ykkBTA�1B � 1=23 k �BTA�1f +BTA�1B�ykk: (3.37)Proof. It follows from (3.35) thatkx� �xkkA � ky � �ykkBTA�1B + jkx� �xkkA � ky � �ykkBTA�1B j� ky � �ykkBTA�1B + ��1=2min (A)kf �A�xk �B�ykk: (3.38)For the BTA�1B-norm of the error y � �yk we haveky � �ykkBTA�1B = kBTA�1f �BTA�1B�ykk(BTA�1B)�1 ; (3.39)whih ompletes the proof. �The �rst term on the right-hand side of (3.36) should be zero in exat arithmetiand it desribes how well the omputed �xk and �yk satisfy (3.7). The seond termis related to the Shur omplement residual whih in exat arithmeti shouldonverge to zero. The reursively omputed residual �r(y)k is a good approximationto �BTA�1f +BTA�1B�yk, provided they are above the level given by Theorem3.1. Therefore its norm represents an easily omputable quantity for the seondterm on the right-hand side of (3.36). The residual f � A�xk � B�yk depends onthe omputed �xk and we distinguish between three shemes with (3.10), (3.11)or (3.12), respetively. We an see that, no matter whih implementation we use,�BTA�1f+BTA�1B�yk is a dominating quantity in (3.36). Therefore, kx��xkkAan be thus well approximated during the onvergene by the quantity 1=23 k�r(y)k kor its estimate. Similar an be said also for ky � �ykkBTA�1B , see (3.37).The errors x� �xk and y� �yk an be estimated with more sophistiated but easilyomputable bounds (without expliit use of residuals and onditioning). As anexample we refer to the rounding error analysis of the onjugate gradient methodand various mathematially equivalent formulas for estimating kx� �xkkA [96℄. Itappears that although many existing bounds were developed using exat arith-meti onsiderations, they estimate suessfully the energy error using omputedquantities whih an be orders of magnitude di�erent from their exat preision



38 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSounterparts. Therefore despite that we assume that A�1 is performed inexatly,it is feasible to estimate the BTA�1B-norm of the error y � �yk.In Figure 3.7 we report the relative error norms kx� �xkkA=kx� �x0kA and ky ��ykkBTA�1B=ky � y0kBTA�1B . The inverse of A in the omputation of BTA�1B-norm is omputed by a diret solver. In agreement with (3.36) and (3.37) andTheorems 3.2, 3.4 and 3.6 (see also Figures 3.3-3.6), the relative A-norm of theerror x � �xk and also the relative BTA�1B-norm of the error y � �yk begin tostagnate at the level proportional to � . Sine the behavior of these quantities forall implementations is similar, we present only the results for the sheme (3.11).The slight di�erene is visible only in the gap between both error norms givenby the estimate (3.35).
2. Null-space projection methodIn this setion we deal with algorithms whih ompute approximations xk andyk suh that xk satis�es BTxk = 0 and yk solves the least squares problemminimizing the residual f �Axk �Byk, i.e.,kf �Axk �Bykk = minv2Rm kf �Axk �Bvk: (3.40)We will denote (3.40) by Byk � f � Axk and assume that the approximatesolution xk+1 and the residual vetor r(x)k+1 are omputed usingxk+1 = xk + �kp(x)k ; (3.41)r(x)k+1 = r(x)k � �kAp(x)k �Bp(y)k ; (3.42)where r(x)0 = By(f � Ax0). The vetors x0 and p(x)k belong to N(BT ) and p(y)ksolves the problem Bp(y)k � r(x)k � �kAp(x)k minimizing the residualkr(x)k � �kAp(x)k �Bp(y)k k = minp2Rm kr(x)k � �kAp(x)k �Bpk:This residual update strategy was proposed in [44℄ (see also [21, 20℄) and isused to redue the roundo� errors in the projetion onto N(BT ). Note thatthe vetors p(y)k an be, with no additional ost, used as diretion vetors foromputing the approximate solution yk+1. Again we will distinguish between
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outer iterationx0; solve By0 � f �Ax0; r(x)0 = f �Ax0 �By0
for k = 0; 1; 2; : : :xk+1 = xk + �kp(x)k

inner iteration / back-substitutionsolve Bp(y)k � r(x)k � �kAp(x)k
A) yk+1 = yk + p(y)k
B) solve Byk+1 � f �Axk+1
C) solve Bqk � f �Axk+1 �Byk; yk+1 = yk + qkr(x)k+1 = r(x)k � �kAp(x)k �Bp(y)kFigure 3.8. Null-spae projetion method: Three di�erentshemes for omputing the approximate solution yk+1 (alled inthe text the updated approximate solution (A), the approximatesolution omputed by a diret substitution (B), the approximatesolution omputed by a orreted diret substitution (C), re-spetively).three bak-substitution formulas (the shemes are desribed in Figure 3.8)yk+1 = yk + p(y)k ; p(y)k = By(r(x)k � �kAp(x)k ); (3.43)yk+1 = By(f � Axk+1); (3.44)yk+1 = yk +By(f � Axk+1 �Byk): (3.45)The pseudoinverseBy in (3.43){(3.45) is applied by solving the least squares withthe matrix B. These problems are solved inexatly. In our onsiderations we will



40 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSassume that the omputed solution �v of the least squares problem Bv �  is anexat solution of a perturbed problem (B+�B)�v � +� with k�Bk=kBk � �and k�k=kk � � . The parameter � again represents the measure for inexatsolution of the least squares with B and atually desribes the bakward error.This an be ahieved in many di�erent ways onsidering the inner iteration loopsolving the assoiated system of normal equations, the augmented system formu-lation, or solving it diretly. Similar inexat shemes have been onsidered forsolving quadrati programming problems [2, 3℄, multigrid methods [20, 21℄ oronstraint preonditioners [63, 83, 89℄. We assume ��(B) � 1 whih guaran-tees B+�B to have a full olumn rank. This allows the use of the perturbationtheory (see [104℄ or [55, Lemma 19.8℄), in partiular the inequalitiesk(B +�B)yk � kByk1� ��(B) ; kBBy �B(B +�B)yk � 2��(B)1� ��(B) :Note that if � = O(u), then we have a bakward stable method for solvingthe least squares problem with B. In our experiments we applied the CGLSmethod [16℄ with the stopping riterion based on the orresponding bakwarderror. Notation � = O(u) stands for the Householder QR fatorization.
2.1. The attainable accuracy in the projected system. In this sub-setion we look at the auray in the outer iteration for solving the projetedsystem (I ��)A(I ��)x = (I ��)f . We an onsider the perturbed system(I � �̂)A(I � �̂)x̂ = (I � �̂)f; (3.46)where �̂ = (B+�B)(B+�B)y suh that k�Bk � �kBk. The residual assoiatedwith the solution of (3.46) an be written as(I��)f � (I��)A(I��)x̂ = (�̂��)f +(I� �̂)A(�� �̂)x̂+(�� �̂)A(I��)x̂and due to k�̂��k � k�BkminfkByk; k(B+�B)ykg [55, Lemma 19.8℄ we havek(I ��)f � (I ��)A(I ��)x̂k � 2��(B)1� ��(B) (kfk+ kAkkx̂k):Indeed, even if we assume exat arithmeti, the residual obtained diretly from x̂is proportional to the parameter � . In addition, we ideally have (B+�B)T x̂ = 0whih implies k � BT x̂k � �kBkkx̂k. Therefore we an expet that also theresidual �BT �xk assoiated with the omputed approximate solution �xk will beproportional to � . Suh analysis is dependent on the hoie of a partiular methodwith the reurrenes (3.41) and (3.42), and therefore we do not give it here. In



2. NULL-SPACE PROJECTION METHOD 41aordane with [47℄ it seems reasonable that the bound for �BT �xk is propor-tional to the fator �Xk. Moreover, the error in the projetion of an arbitraryvetor is represented in the bounds by ��(B)=[1 � ��(B)℄. Therefore �BT �xkand ��xk an be expeted to have the formk �BT �xkk � O(� )kBk1� ��(B) �Xk; k��xkk � O(� )�(B)1� ��(B) �Xk: (3.47)Theorem 3.9 shows that the true residual (I � �)f � (I � �)A(I � �)�xk isultimately proportional to � , while its projetion onto N(BT ) will �nally reahthe level O(u) provided that the updated residual �r(x)k onverges far below thatlevel.Theorem 3.9. The gap between the true residual (I��)f�(I��)A(I��)�xkand the projetion of the updated residual (I ��)�r(x)k an be bounded byk(I ��)f � (I ��)A(I ��)�xk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk+ kAk �Xk);where �Xk � maxi=0;:::;k k�xik.Proof. The omputed approximation �xk+1 satis�es the relations�xk+1 = �xk + ��k �p(x)k +�xk+1; k�xk+1k � uk�xkk+ (2u+ u2)k��k �p(x)k k: (3.48)The inequality k��k �p(x)k k � k�xk+1k + k�xkk + k�xk+1k gives k��k �p(x)k k � 3 �Xk+1and k�xk+1k � O(u) �Xk+1. The vetors �y0 and �p(y)k satisfy (B + �B0)�y0 �(f �Ax0) + �0 with k�B0k � �kBk, k�0k � �k(f �Ax0)k and(B +�Bk)�p(y)k � (�r(x)k � ��kA�p(x)k ) + �k; (3.49)k�Bkk � �kBk; k�kk � �k(�r(x)k � ��kA�p(x)k )k: (3.50)For updated residuals we have �r(x)0 = (f �Ax0 �B�y0) and�r(x)k+1 = �r(x)k � ��kA�p(x)k �B�p(y)k +�r(x)k+1; (3.51)k�r(x)k+1k � O(u)(k�r(x)k k+ kAkk��k�p(x)k k+ kBkk�p(y)k k): (3.52)



42 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSThe reursive use of (3.48) and (3.51) leads to the expression for the gap betweenthe projetions of f �A�xk and �r(x)k(I ��)(f �A�xk � �r(x)k ) = (I ��)(f �A�x0 � �r(x)0 )� k�1Xi=0(I ��)(A�xi+1 +�r(x)i+1):Taking norms and orresponding bounds we get, after some manipulation, thefollowing:k(I ��)(f �A�xk � �r(x)k )k � O(u)�(B)1� ��(B) �kfk+ kAk �Xk� : (3.53)Here we have used that k�r(x)k k � k�r(x)0 k for k = 0; 1; : : : whih seems reasonablewhen solving the positive semi-de�nite problem. For the gap between (I��)f�(I ��)A(I ��)�xk and (I ��)�r(x)k , we an writek(I ��)f � (I ��)A(I ��)�xk � (I ��)�r(x)k k � k(I ��)(f �A�xk � �r(x)k )k+ k(I ��)A��xkk:Considering (3.53) and (3.47) we an onlude the proof. �In Figure 3.9 we report the relative norms of the true residual (I � �)f � (I ��)A(I � �)�xk (solid lines) and the updated residual �r(x)k (dashed lines). Thenumerial results on�rm that the residual f�A�xk is withinN(BT ) approximatedby �r(x)k to the working preision u. However, this is not true for the residual(I��)f�(I��)A(I��)�xk whih is ultimately O(� ) as it follows from Theorem3.9. The residual �BT �xk obviously does not depend on the bak-substitutionsheme; see Figure 3.10.In ontrast to the Shur omplement redution method, the inexatness is on-neted with the matrix B instead of A. In pratie, the sequential appliationof the matrix (I � �)A(I � �) does not represent a symmetri operator. Thisis also reeted in the fat that we assume a general framework for omput-ing the vetor xk and analyze another projetion of residuals f � A�xk � B�ykand �r(x)k . Ideally at every iteration step we apply the matrix-vetor produtwith the matrix (I � �̂)A(I � �̂), where �̂ represents the orthogonal projetor�̂ = (B+�B)(B+�B)y with k�Bk � �kBk. A question similar to one in sub-setion 1.1 arises whether we an apply the results of [47℄ diretly to the system



2. NULL-SPACE PROJECTION METHOD 43

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number

re
la

tiv
e 

re
si

du
al

 n
or

m
s 

||(
I−

Π
)f

−
(I

−Π
)A

(I
−

Π
)x

k)|
|/|

|(
I−

Π
)f

−
(I

−Π
)A

(I
−

Π
)x

0)|
|, 

||r
k||/

||r
0||

Figure 3.9. Null-spae projetion method: the relative normsof the true residual (I��)f�(I��)A(I��)�xk of the projetedsystem (solid lines) and the updated residual �r(x)k (dashed lines){ the updated solution sheme (3.43).(I � �̂)A(I � �̂)x̂ = (I � �̂)f . Theorem 3.9 shows that in �nite preision arith-meti the residual (I ��)f � (I ��)A(I ��)�xk will remain proportional to theparameter � . The theory of Greenbaum an be diretly applied only if the multi-pliation by (I��)A(I��) satis�es k[(I��)A(I��)x℄� (I��)A(I��)xk �O(u)k(I ��)A(I ��)kkxk whih is obviously not the ase here. In the idealizedase we have [(I ��)A(I ��)x℄ = (I � �̂)A(I � �̂)x and henek[(I ��)A(I ��)x℄� (I ��)A(I ��)xk � O(� )�(B)1� ��(B)kAkkxk:If we ould improve this bound to satisfy k[(I � �)A(I � �)x℄� (I ��)A(I ��)xk � �kAkkxk, the outer iteration proess ould be viewed as an iteration in�nite preision arithmeti with the roundo� unit equal to � and the theory of
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Figure 3.11. Null-spae projetion method: The relativenorms of the true residual f�A�xk�B�yk and the updated resid-ual �r(x)k (for the updated solution sheme (3.43)).Owing to (3.47), ��xk (and thus also �BT �xk) is O(� ). From Theorem 3.9 we havethat k(I��)f�(I��)A(I��)�xkk is ultimately O(� ). Sine (I��)(f�A�xk) =(I � �)(f � A�xk � B�yk) for any �yk it also follows from Theorem 3.9 that theprojetion of f � A�xk � B�yk onto N(BT ) will ultimately reah O(u). It is notlear from (3.54) whether the whole residual f � A�xk � B�yk will be ultimatelyO(� ) or O(u). It strongly depends on the bak-substitution sheme used foromputing the approximate solutions yk+1. The following subsetions show thatthe residual f � A�xk � B�yk for the shemes with (3.43) (sheme A) and with(3.45) (sheme C) will �nally reah O(u), while the sheme B using (3.44) leadsto the auray that is proportional only to � .
2.2. Scheme A: The updated approximate solution. In this subse-tion we analyze the generi sheme with the update (3.43). This implementation
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Figure 3.12. Null-spae projetion method: The relativenorms of the true residual f�A�xk�B�yk and the updated resid-ual �r(x)k (for the diret substitution sheme (3.44)).does not require any additional solution of a least squares problem with the ma-trix B. Indeed, the omputed diretion vetor p(y)k is used to update both theiterate yk and the residual �r(x)k . As we will see, this algorithm omputes theresidual f � A�xk � B�yk whih will ultimately reah the level of roundo� unitu independently on the fat that the inner least squares are solved with theauray determined by the parameter � .Theorem 3.10. The gap between the residuals f � A�xk � B�yk and �r(x)k anbe bounded as follows:kf �A�xk �B�yk � �r(x)k k � O(u)(kfk + kAk �Xk + kBk�Yk);where �Yk � maxi=0;:::;k k�yik. The statement of the theorem remains true ifwe replae �Yk by maxfky0k; kp(y)i k; i = 0; 1; : : : ; k � 1g.
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2. NULL-SPACE PROJECTION METHOD 49norms of f �A�xk �B�yk (solid lines) and �r(x)k (dashed lines). The results of ournumerial experiment are in a good agreement with Theorem 3.10.
2.3. Scheme B: The approximate solution computed by a direct

substitution. In this subsetion we analyze the sheme (3.44), whih uses thediretly omputed right-hand side vetor f � Axk. The omputed �yk is then asolution of the perturbed problem(B +�Bk)�yk � (f �A�xk) + �k (3.55)with k�Bkk � �kBk and k�kk � �k(f�A�xk)k. We will show that (I��)�r(x)kis a good approximation of f � A�xk � B�yk provided that both are above theirlevel of maximum attainable auray.Theorem 3.12. The gap between the residuals f �A�xk�B�yk and (I ��)�r(x)kan be bounded bykf �A�xk �B�yk � (I ��)�r(x)k k � 5��(B)1� ��(B) (kfk+ kAkk�xkk)+O(u)(kfk + kAk �Xk + kBk�Yk):Proof. Considering (3.55) it follows for the true residual thatf �A�xk �B�yk = f �A�xk �B(B +�Bk)y[(f �A�xk) + �k℄= (I ��)(f �A�xk) +B[By � (B +�Bk)y℄(f �A�xk)+BBy[(f � A�xk)� (f �A�xk)℄�B(B +�Bk)y�k:Taking (3.55), the bounds on B[By� (B+�Bk)y℄, (B+�Bk)y and Theorem 3.9we get the desired result. �Corollary 3.13. The gap between the residuals f�A�xk�B�yk and (I��)�r(x)kan be bounded bykf �A�xk �B�yk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk+ kAkk�xkk)+ O(u)�(B)1� ��(B) (kfk+ kAk �Xk):When using the formula (3.44) the residual f�A�xk�B�yk will not derease belowa level proportional to � , while (I��)�r(x)k onverges beyond the level O(u). Thisresult is illustrated by our numerial experiment. In Figure 3.12 we plotted therelative norms of f �A�xk �B�yk (solid lines) and �r(x)k (dashed lines).
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2.4. Scheme C: The approximate solution computed with a cor-

rected direct substitution. In this subsetion we analyze the sheme (3.45)requiring a solution of two least squares problems with B. We show that itsbehavior is similar to the algorithm using the update (3.43). We prove that un-der ertain assumptions the true residual f � A�xk � B�yk onverges ultimatelyto the O(u) level. The di�erene is that while Theorem 3.10 holds without anyadditional onditions, here we have a situation analogous to the behavior of non-stationary iterative methods (see [55, Chapter 16℄).Theorem 3.14. Provided that for suÆiently large step k the omputed ve-tor �xk stagnates, i.e., we have k�xk+1 � �xkk � O(u) �Xk+1, there exists someiteration step k0 suh thatkf �A�xk �B�yk � (I ��)�r(x)k k � O(u)(kfk+ kAk �Xk + kBk�Yk)holds for all k � k0.Proof. The vetor �yk+1 satis�es �yk+1 = �yk + �q(y)k +�yk+1 and k�yk+1k �O(u) �Yk+1, where �q(y)k is the solution of the problem (B + �Bk)�q(y)k � (f �A�xk+1�B�yk)+�k with k�Bkk � �kBk and k�kk � �k(f �A�xk+1�B�yk)k.For f �A�xk+1 �B�yk+1 we an then writef �A�xk+1 �B�yk+1 = (I ��)(f �A�xk+1) +Gk(f �A�xk+1 �B�yk)�B(B +�Bk)y�k + hk;where Gk = B[By� (B+�Bk)y℄ and hk = �B(B+�Bk)y[(f�A�xk+1�B�yk)�(f � A�xk+1 � B�yk)℄ � B�yk+1. Projeting f � A�xk+1 � B�yk+1 onto R(B) andtaking norms, we obtaink�(f �A�xk+1 �B�yk+1)k � �kGkk+ �kB(B +�Bk)yk� kf �A�xk+1 �B�ykk+�kB(B +�Bk)ykk(f �A�xk+1 �B�yk)� (f �A�xk+1 �B�yk)k+ khkk:The term kf �A�xk+1 �B�ykk an be further bounded bykf �A�xk+1 �B�ykk � k(I ��)(f �A�xk+1)k+ k�(f �A�xk �B�yk)k+ kA(�xk+1 � �xk)k



2. NULL-SPACE PROJECTION METHOD 51whih together with the bound on kGkk, khkk � O(u)(kfk+kAk �Xk+1+kBk�Yk+1),and �kB(B +�Bk)yk � ��(B)[1� ��(B)℄�1 < 1 leads tok�(f �A�xk+1 �B�yk+1)k � 3��(B)1� ��(B) [k�(f �A�xk �B�yk)k+k(I ��)(f �A�xk+1)k+ kAkk�xk+1 � �xkk℄+O(u)(kfk+ kAk �Xk+1 + kBk�Yk+1):After the reursive use of the previous inequality we obtaink�(f �A�xk �B�yk)k � � 3��(B)1� ��(B)�k kf �A�x0 �B�y0k+ k�1Xi=0 � 3��(B)1� ��(B)�k�i [k(I ��)(f �A�xi+1)k+ kAkk�xi+1 � �xik℄+O(u)(kfk + kAk �Xk + kBk�Yk): (3.56)Under the assumption on the stagnation of iterates there exist some index k0 suhthat the seond term on the right-hand side of (3.56) will be of order O(u)(kfk+kAk �Xk + kBk�Yk) for all iteration steps k � k0. Finally, from Theorem 3.10 wehave k(I ��)(f �A�xk)� (I ��)�r(x)k k � O(u)(kfk + kAk �Xk + kBk�Yk). �Corollary 3.15. Provided that for suÆiently large step k the omputedvetor �xk stagnates, i.e., we have k�xk+1� �xkk � O(u) �Xk+1, there exists someiteration step k0 suh thatkf �A�xk �B�yk � (I ��)�r(x)k k � O(u)�(B)1� ��(B) (kfk+ kAk �Xk)holds for all k � k0.Theorem 3.14 shows that f �A�xk�B�yk will ultimately reah the O(u) level. Assoon as the approximate solutions �xk stagnate with k�xk+1 � �xkk � O(u) �Xk+1,the rate of onvergene of this proess is roughly given by the fator 3��(B)[1���(B)℄�1. Note that similar to subsetion 1.4 the assumption on the stagnationis not restritive. The numerial results on a model example are shown in Figure3.13, whih reports the relative norms of f � A�xk � B�yk (solid lines) and �r(x)k(dashed lines), and are in a good agreement with Theorem 3.14.
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2.5. Forward error analysis. In this subsetion we look at the maximumattainable auray measured by errors x � �xk and y � �yk. The analysis isvery similar to the Shur omplement redution method and therefore we fousonly on issues partiular to the null-spae projetion method. We reall thatrelation (3.32) gives the universal bounds (3.33), (3.34), and (3.35). Independentof the bak-substitution sheme used for omputing �yk, the terms 2k � BT �xkkand 3k � BT �xkk on the right-hand side of (3.33) and (3.34), respetively, arealways proportional to � . The terms with f � A�xk � B�yk depend on the bak-substitution formula and their �nal magnitude will be at most O(� ), leading tosimilar onlusions on errors as in subsetion 1.5. The estimate for kx� �xkkA isgiven in the following theorem.Theorem 3.16. The A-norm of the error x� �xk an be bounded askx� �xkkA � Æ1k �BT �xkk+ Æ2k(I ��)(f �A�xk)k; (3.57)where Æ1 � kAk1=2=�min(B) and Æ2 � ��1=2min (A) are onstants independent ofthe iteration step k.Proof. Sine (I � �)A(x � �xk) = (I � �)(f � A�xk), BTx = 0 and usingkB(BTB)�1k = ��1min(B), kx� �xkk2A an be written askx� �xkk2A = (�(x� �xk); A(x� �xk)) + ((I ��)A(x � �xk); x� �xk)� kA1=2kkx� �xkkA(kB(BTB)�1kkBT (x� �xk)k+ k(I ��)(f �A�xk)k):Dividing both sides by kx� �xkkA gives the statement (3.57). �The �rst term on the right-hand side of (3.57) should be zero in exat arithmeti.The omputed �xk, however, does not ful�ll �BT �xk = 0 and its departure fromN(BT ) was disussed in (3.47). The seond term onverges to zero in exatarithmeti and it is related to the projeted residual (I��)(f�A�xk), see Theorem3.53. The result for y��yk an be obtained from (3.57) using (3.35). Provided that�r(x)k is larger than O(� ), kx� �xkkA is then well approximated by Æ2k(I��)�r(x)k k.

3. Numerical experiments in the nonsymmetric caseIn this setion we onsider a nonsymmetri blok A in the system (3.1). Henethe di�erene here is that we apply a nonsymmetri iterative method to solvethe Shur omplement system BTA�1By = BTA�1f and the projeted system



3. NUMERICAL EXPERIMENTS IN THE NONSYMMETRIC CASE 53(I��)A(I��)x = (I��)f . We demonstrate the theoretial results of Setions1 and 2 on a simple numerial example of a nonsymmetri system (3.1) withA = tridiag (1; 10�5;�1) 2 R
100;100; B = rand (100; 50); f = (1; : : : ; 1)T :Sine �(A) = kAkkA�1k = 2:00 � 32:15 = 64:27 and �(B) = kBkkByk = 7:39 �0:75 = 5:55, the onditioning of matries A and B has not a signi�ant e�eton the behavior of onsidered shemes. For eah test we set y0 = 0 and x0 = 0for the Shur omplement redution method and for the null-spae projetionmethod, respetively.The norms of the updated residual vetors onverge usually to zero or at leastbeome orders of magnitude smaller than unit roundo�. It follows from ourtheory that in suh ases the true residuals assoiated with the approximatesolutions �xk and �yk stagnate on the level proportional to the maximum norms(measured either by �Xk or �Yk) of iterates omputed during the whole iterationproess. It is also a well-known fat that for methods in whih some (�xed) normof the error or the residual dereases monotonially the maximum attainableauray level depends then on the norm of the initial residual.One of the most straightforward methods to solve a general nonsymmetri sys-tem is the CGNE method [54, 25℄ whih transforms the solution of a generalsquare system to the symmetri positive (semi)de�nite system of normal equa-tions. Sine the CGNE method is nothing but the CG method [54℄ applied tothe system of normal equations, its approximate solution minimizes the 2-normof the error over the assoiated Krylov subspae. Beause the ondition numberof the system matrix is squared, we an expet rather slow onvergene of CGNEin general. Therefore, the use of the GMRES [88℄ method is preferred where theresidual norm is minimized over the entire Krylov subspae generated with theoriginal system matrix and orresponding right-hand side. Indeed, due to theoptimality of iterates the quantities �Xk and �Yk in CGNE and GMRES appliedeither to the Shur omplement system or to the projeted system annot be sig-ni�antly larger than the size of the initial approximations x0, y0 and unknownsx and y. Depending on the atual baksubstitution formula the maximum at-tainable auray level is then proportional either to roundo� unit u or to theparameter � , and the quantities �Yk and �Xk do not play an important role in ourbounds.Unfortunately, for general nonsymmetri systems the GMRES method annotbe implemented without full reurrenes. In order to redue the storage andomputational work several lasses of nonsymmetri iterative methods have been



54 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSproposed inluding very popular methods based on the nonsymmetri Lanzosproess suh as Bi-CG [35℄ or CGS [93℄. These methods ompute the iterates andresidual vetors using short reurrenes keeping the omputational ost onstantat eah iteration step (in ontrast to the linear growth for the ase of GMRES).The approximate solutions of suh methods are however no longer optimal andtheir onvergene behavior an be quite irregular (they even may oasionally failto onverge). In pratie the norms of iterates an beome very large during theinitial phase of the omputation until the iterates begin to onverge and �nallyto stagnate near the true solution. For this reason one annot give an a prioribound on �Xk and �Yk, and indeed the algorithms for solving the Shur omplementsystem and the projeted system suh as the Bi-CG or CGS method may fail toobtain small ultimate residuals even if the updated residuals onverged beyondthe unit roundo�. So the possibility of large iterates may orrespondingly a�etthe maximum attainable auray level for suh nonsymmetri iterative methods.An example of these e�ets is shown in Figure 3.15 where we onsider GMRES,CGNE, Bi-CG and CGS in the Shur omplement redution method with the in-ner systems solved by the diret method based on the LU fatorization of the ma-trix A. Similarly in Figure 3.16 we report the results for the null-spae projetionmethod, where the inner systems were solved using the Householder QR fator-ization of the matrix B. We have plotted the true residual BTA�1f�BTA�1B�ykand (I � �)(f � A�xk) and the updated residuals �r(y)k and �r(x)k , respetively forGMRES (solid lines), CGNE (dash-dotted lines), Bi-CG (dotted lines) and CGS(dashed lines). As the omputed residuals onverge to zero for all methods (orto the unit roundo� level in the ase of the GMRES method), true residuals inthe Shur omplement system and in the projeted system behave as indiatedby the estimates of Theorem 3.1 and 3.9. It is lear from Figures 3.15 and 3.16that for the error norm minimizing CGNE and the residual minimizing GMRESis the maximum attainable auray level proportional to the unit roundo�. Thequantities �Yk and �Xk are omparable to the size of unknowns y and x and theydo not a�et the limiting auray of omputed approximate solutions. The sit-uation is ompletely di�erent for the Bi-CG and CGS methods where the sizeof iterates grows approximately to 105 (for Bi-CG) and to 107 (for CGS) in theShur omplement redution method, or to 106 (for Bi-CG) and to 1011 (for CGS)in the null-spae projetion method (see the orresponding Tab. 3.1). Indeed,the results on�rm that the �nal residuals reah the levels whih are roughlyequal to O(u) �Yk or O(u) �Xk instead of O(u). Note that the matries A and B
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Figure 3.15. Relative norms of the residual BTA�1f �BTA�1B�yk in the Shur omplement redution method withrespet to the iteration number for GMRES (solid lines), CGNE(dash-dotted lines), Bi-CG (dotted lines) and CGS (dashed lines)with a diret solver used for the solution of inner systems.are well onditioned and thus the norms of the Shur omplement matrix andthe projeted matrix do not a�et the �nal auray level for this example.In Figures 3.17 and 3.18 we report the norms of the residual f � A�xk � B�yk inthe Shur omplement redution method where the system (3.3) is solved by theBi-CG method (on the left) or by the CGS method (on the right). In eah plot weshow the norms of f �A�xk �B�yk for the generi update (solid lines), the diretsubstitution (dashed lines) and the orreted diret substitution (dotted lines).The inner systems are solved either by the diret solver (LU fatorization) or bythe Bi-CG method with � = 10�12. The presented results on�rm our estimatesfrom the previous setion. From Figures 3.17 and 3.18 we an see the di�erenebetween the �nal auray levels of the norm of f � A�xk � B�yk for the generi
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3. NUMERICAL EXPERIMENTS IN THE NONSYMMETRIC CASE 57Shur omplement redution Null-spae projetion�Yk �Yk �Xk �Xk(dir. sol.) (� = 10�12) (dir. sol.) (� = 10�9)GMRES 1:6155�101 1:6155�101 3:9445�101 3:9445�101CGNE 1:6157�101 1:6156�101 3:9445�101 3:9445�101BiCG 9:8556�104 1:5190�106 6:5733�105 6:5733�105CGS 3:3247�107 7:7455�109 5:2896�1010 5:2896�1010Table 3.1. Quantities �Yk and �Xk in the Shur omplementmethod and in the null-spae projetion method, respetively,for GMRES, CGNE, BiCG and CGS.CGS the residual norms for the orreted diret substitution onverge to the unitroundo� level and it is not a�eted by the osillations in the initial phase (seeCorollary 3.7).In Figures 3.19 and 3.20 we report the norms of the residual f � A�xk �B�yk forthe null-spae projetion method where the projeted system is solved either bythe Bi-CG method (on the left) or by the CGS method (on the right). In eahplot we show the norms of f �A�xk�B�yk for the generi update (solid lines), thediret substitution (dashed lines) and the orreted diret substitution (dottedlines). The inner systems are solved either by the diret solver (Householder QRfatorization) or by the CGLS method with � = 10�9. The results on�rm ourestimates disussed in the previous setion. For the diret substitution (3.44)the bound for the attainable auray level of f � A�xk+1 � B�yk+1 depends ontwo terms. The �rst is proportional to the unit roundo� u and to the quantity�Xk, while the seond term is proportional to � and to the norm of the atualiterate �xk (see Corollary 3.11 and 3.13). Therefore, if the onvergene behavioris very dramati, the maximum attainable auray an be signi�antly a�etedby the rounding errors proportional to u dominating the bound over the termsdependent on the parameter � . However, when the onvergene behavior is quiteregular the ultimate level of the norm of f � A�xk � B�yk does depend also on� . This an be seen in Figures 3.19 and 3.20. The �nal level of the residualf � A�xk � B�yk in Bi-CG (with the diret substitution sheme and � = 10�9)is still dependent on � (on the left), while the same quantity for CGS (withmore irregular onvergene behavior), is atually dominated only by the rounding
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Figure 3.17. Shur omplement redution method: Relativenorms of the residual f�A�xk�B�yk for the Bi-CG method usingthe generi update (solid lines), the diret substitution (dashedlines) and the orreted diret substitution (dotted lines) withthe inner systems solved either by a diret solver or by an iter-ative method where � = 10�12.errors (on the right). For other two bak-substitution formulas the norms off �A�xk�B�yk ultimately stagnates on the level proportional to u. In ontrast tothe Shur omplement redution method for both Bi-CG and CGS the residualsin the orreted diret substitution sheme (3.45) onverge to the level of unitroundo� a�eted however by the osillations of the iterates (see Corollary 3.15).
4. Backward error estimate for the Schur complement reductionWe an also interpret the solution omputed by an inexat method as the ex-at solution of a perturbed problem. It seems quite reasonable to use the loal
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Figure 3.18. Shur omplement redution method: Relativenorms of the residual f �A�xk �B�yk for the CGS method usingthe generi update (solid lines), the diret substitution (dashedlines) and the orreted diret substitution (dotted lines) withthe inner systems solved either by a diret solver or by an iter-ative method where � = 10�12.bakward errors of inner systems to give an estimate on the global bakwarderror assoiated with the original saddle point system. In this setion we try toillustrate these ideas to the ase of the sheme A of the Shur omplement redu-tion (see subsetion 1.2). Instead of the system (3.1) we onsider the generalizedsaddle point system � A BBT �C��xy� = �fy� ; (3.58)where A, B and f are as in the previous setions and C is an m � m matrix(often symmetri positive semide�nite in appliations).
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Figure 3.19. Null-spae projetion method: Relative normsof the residual f � A�xk � B�yk for the Bi-CG method usingthe generi update (solid lines), the diret substitution (dashedlines) and the orreted diret substitution (dotted lines) withthe inner systems solved either by a diret solver or by an iter-ative method where � = 10�9.Assume that the initial approximation �x0 satis�esA�x0 = (f �By0) + s(x)0 ; ks(x)0 k � � (x)0 kAkk�x0k; (3.59)where s(x)0 is the residual. Note that the ondition on ks(x)0 k is equivalent to thatused in Setion 1.2. Similarly let the omputed diretion vetors p(x)i satisfyA�p(x)i = (�B�p(y)i ) + s(p)i ; ks(p)i k � � (p)i kAkk�p(x)i k: (3.60)The vetor s(p)i is the orresponding residual. Based on these onsiderations wean formulate the following theorem whih states that the omputed iterates �xk
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Figure 3.20. Null-spae projetion method: Relative norms ofthe residual f�A�xk�B�yk for the CGS method using the generiupdate (solid lines), the diret substitution (dashed lines) andthe orreted diret substitution (dotted lines) with the innersystems solved either by a diret solver or by an iterative methodwhere � = 10�9.and �yk satisfy a perturbed equation f � (A +�A)x � By = 0. In addition, wegive a bound on the norm of the di�erene g �BT �xk + C�yk � �r(y)k .Theorem 3.17. The iterates omputed with the algorithm of the Shur om-plement redution method using the bak-substitution formula (3.10) satisfythe inequality kf � (A+�A(k))�xk �B�ykk� ukfk+ 5kukAk �Xk + (1 + + (5 + 2)k)ukBk�Yk: (3.61)



62 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSwhere the perturbation matrix �A(k) is given by�A(k) �  �s(x)0 � k�1Xi=0 �is(p)i ! �xTkk�xkk2with k�A(k)k � kkAk; k � � (x)0 k�x0k+Pk�1i=0 � (p)i k��i�p(x)i kk�xkkand �Xk � maxfk�xik j i = 0; 1; : : : ; kg; �Yk � maxfk�yik j i = 0; 1; : : : ; kg:The norm of the gap between the true residual g � BT �xk + C�yk and theupdated one �r(y)k an be bounded as followskg�BT �xk+C�yk� �r(y)k k � ukgk+(3++(12+2)k)u(kBk �Xk+kCk�Yk): (3.62)Proof. The omputed iterates �xi and �yi (i = 0; 1; : : :) satisfy�xi+1 = �xi + ��i�p(x)i +�xi+1; k�xi+1k � uk�xik+ 2uk��i�p(x)i k+O(u2); (3.63)�yi+1 = �yi + ��i �p(y)i +�yi+1; k�yi+1k � uk�yik+ 2uk��i�p(y)i k+O(u2): (3.64)Sine k��i�p(x)i k � k�xi+1k+ k�xik+ k�xi+1k, we obtaink��i�p(x)i k � (1+2u)k�xi+1k+(1+3u)k�xik+O(u2) � (2+5u) �Xi+1+O(u2) (3.65)and hene the inequality (3.63) beomesk�xi+1k � 2uk�xi+1k+ 3uk�xik+O(u2) � 5u �Xi+1 +O(u2): (3.66)Similarlyk��i�p(y)i k � (1+2u)k�yi+1k+(1+3u)k�yik+O(u2) � (2+5u) �Yi+1+O(u2) (3.67)and hene the inequality (3.64) beomesk�yi+1k � 2uk�yi+1k+ 3uk�yik+O(u2) � 5u�Yi+1 +O(u2): (3.68)The omputed updated residual satis�es�r(y)i+1 = �r(y)i � ��iBT �p(x)i + ��iC �p(y)i +�r(y)i+1 (3.69)with k�r(y)i+1k � uk�r(y)i k+ (3 + )u(kBkk��i�p(x)i k+ kCkk��i�p(y)i k) +O(u2):



4. BACKWARD ERROR ESTIMATE 63Using (3.65) and (3.67) we getk�r(y)i+1k � uk�r(y)i k+ (6 + 2)u(kBk �Xi+1 + kCk�Yi+1) +O(u2): (3.70)To obtain the �rst statement (3.61), we start withf �A�xi+1 �B�yi+1 = f �A�xi �B�yi � ��iA�p(x)i � ��iB�p(y)i �A�xi+1 �B�yi+1= f �A�xi �B�yi � ��is(p)i + ��i((B�p(y)i )�B�p(y)i )�A�xi+1 �B�yi+1whih givesf �A�xk �B�yk = �s(x)0 � k�1Xi=0 ��is(p)i� ((f �By0)� (f �By0))+ k�1Xi=0 ���i((B�p(y)i )�B�p(y)i )�A�xi+1 �B�yi+1�using (3.59) and (3.60). Now (3.61) follows by taking norms and using (3.66),(3.68) and the de�nition of �A(k). The seond statement (3.62) follows fromg�BT �xi+1+C�yi+1��r(y)i+1 = g�BT �xi+C�yi��r(y)i �BT�xi+1+C�yi+1��r(y)i+1:The reursive use of this identity givesg �BT �xk + C�yk � �r(y)k = g �BT �x0 + Cy0 � �r(y)0+ k�1Xi=0(�BT�xi+1 + C�yi+1 ��r(y)i+1): (3.71)It an be easily shown by indution that �r(y)i = g�BT �xi+C�yi+O(u) and hene(3.70) beomes k�r(y)i+1k � (7 + 2)u(kBk �Xi+1+ kCk�Yi+1) +O(u2) and taking anorm on both sides of (3.71) proves the desired result. �The theorem shows that the omputed iterates �xk and �yk are the blok ompo-nents of the exat solution vetor of the perturbed saddle point problem�A+�A(k) BBT �C���xk�yk� = �f +�fkg +�gk� ; (3.72)where k�fkk � O(u)(kfk + kAk �Xk + kBk�Yk);k�gkk � O(u)(kgk+ kBk �Xk + kCk�Yk) + k�r(y)k k:



64 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSWhen the norm of �r(y)k drops below the level of unit roundo� the iterates �xkand �yk satisfy the system (3.72), where the inexatness of inner systems is on-entrated mainly in the perturbed matrix A +�A(k), while the right-hand sideis a�eted only by an O(u) perturbation. The inner bakward errors � (x)0 and� (p)i should be small enough to ensure that the perturbed matrix A +�A(k) isnonsingular whih gives an upper bound on k. However this quantity dependson terms known the step k of the iteration proess and it is not lear at themoment how to hoose a priori the inner toleranes � (x)0 and � (p)i to ensure thatthe ondition k < 1=�(A) will hold. See [90, 39℄ for similar issues related toGMRES and FOM, and [2, 3℄ for the bakward error analysis when sparse elim-ination tehniques ombined with iterative methods are applied to the solutionof saddle point problems arising in sparse quadrati programming problems.



CHAPTER 4
Numerical stability of some residual minimizing

Krylov subspace methodsIn this hapter we onsider ertain methods for solving a system of linear algebraiequations Ax = b; A 2 R
N�N ; b 2 R

N ; (4.1)where A is a large and sparse nonsingular matrix that is, in general, nonsymmet-ri. For solving suh systems, Krylov subspae methods are very popular. Theybuild a sequene of iterates xn (n = 0; 1; 2; : : :) suh that xn 2 x0 + Kn(A; r0),where Kn(A; r0) � spanfr0; Ar0; : : : ; An�1r0g is the nth Krylov subspae gen-erated by the matrix A from the residual r0 � b � Ax0 that orresponds tothe initial guess x0. Many approahes for de�ning suh approximations xn havebeen proposed, see, e.g., the books by Greenbaum [47℄, Meurant [72℄, and Saad[87℄. In partiular, due to their smooth onvergene behavior, minimum residualmethods satisfyingkrnk = min~x2x0+Kn(A;r0) kb�A~xk; rn � b�Axn; (4.2)are widely used, e.g., the GMRES algorithm of Saad and Shultz [88℄.The lassial implementation of GMRES makes use of a nested sequene oforthonormal bases of the Krylov subspaes Kn(A; r0). These bases are gener-ated by an Arnoldi proess [6℄. With the notation �0 � kr0k, q1 � ��10 r0,Qn � [q1; : : : ; qn℄, where the olumns of Qn form this orthonormal basis ofKn(A; r0), and with an (n + 1) � n upper Hessenberg matrix Hn+1;n, its resultan be ast in matrix form as[q1; AQn℄ = Qn+1[e1; Hn+1;n℄:This an be viewed as the QR fatorization of the matrix [q1; AQn℄. Ultimately,an approximate solution xn satisfying the minimum residual property (4.2) isonstruted in the form xn = x0 + Qnyn, but xn is not needed at every step.65



66 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSFrom the relation krnk = kr0 �AQnynk = k�0e1 �Hn+1;nynkit follows that yn is the solution of the (n + 1) � n least squares problemHn+1;nyn � �0e1, and that krnk equals the norm of its residual �0e1�Hn+1;nyn 2
R
n+1. This problem an be solved via the reursive QR fatorization of Hn+1;n,updated by applying n Givens rotations and determining a new one in the nthstep. One the norm of the residual is small enough | whih an be seen with-out expliitly solving the least squares problem | the triangular system withthe omputed R-fator is solved, and the approximate solution xn is omputed.In [27, 48, 78℄ it was shown that this \lassial" version of the GMRES methodis bakward stable provided that the Arnoldi proess is implemented using themodi�ed Gram-Shmidt algorithm or Householder reetions.Here we deal with a di�erent approah proposed by Walker and Zhou [103℄, whoalled it the Simpler GMRES method. To derive it, we reall that the minimumresidual property (4.2) is equivalent to the orthogonality onditionrn ? AKn(A; r0);where ? is the orthogonality relation indued by the standard Eulidean innerprodut h�; �i. Instead of building an orthonormal basis of Kn(A; r0) we look foran orthonormal basis Vn � [v1; : : : ; vn℄ of AKn(A; r0). As proposed by Walkerand Zhou, we ould onstrut it again by an Arnoldi proess. This leads to theQR fatorization A[q1; Vn�1℄ = VnUn; (4.3)where Un is an n�n upper triangular matrix. We propose a generalization thatonsists in allowing to replae this Arnoldi proess. Instead of using the imageAvn�1 of the last onstruted orthonormal basis vetors to extend the basiswe onsider any nested sequene of matries Zn�1 � [z1; : : : ; zn�1℄ suh thatthe olumns of [q1; Zn�1℄ form a basis of Kn(A; r0), and we make use of Azn�1to extend the basis. We may assume that the olumns zk of Zn�1 have unitlength (and we will do so in the error analysis), but they need not be mutuallyorthogonal. The orthonormal basis Vn of AKn(A; r0) is thus obtained from theQR fatorization of the image of [q1; Zn�1℄:A[q1; Zn�1℄ = VnUn: (4.4)Sine rn 2 r0 + AKn(A; r0) = r0 +R(Vn) and rn ? R(Vn), we an obtain theresidual from rn = (I � VnV Tn )r0. Note that rn is just the orthogonal projetion



67of r0 onto the orthogonal omplement of R(Vn). To ompute it we apply themodi�ed Gram-Shmidt method, whih leads to the reursionrn = rn�1 � �nvn; �n � hrn�1; vni: (4.5)This reursion an be ast into a matrix relation too. Let Rn+1 � [r0; : : : ; rn℄,let Dn � diag(�1; : : : ; �n), and let Ln+1;n 2 R
(n+1)�n be the bidiagonal matrixwith ones on the main diagonal and minus ones on the �rst subdiagonal; then(4.5) an be written as Rn+1Ln+1;n = VnDn: (4.6)Sine the olumns of [q1; Zn�1℄ are a basis of Kn(A; r0), we an represent xn inthe form xn = x0 + [q1; Zn�1℄tn; (4.7)so that rn = r0 � A[q1; Zn�1℄tn = r0 � VnUntn. Due to the minimum residualproperty, we have rn ? R(Vn), and thus simplyUntn = V Tn r0 = [�1; : : : ; �n℄T : (4.8)Hene, one the residual norm is small enough, we an solve this triangularsystem and ompute xn = x0 + [q1; Zn�1℄tn. We all this general approahthe simpler approah. It inludes, as a speial ase, Simpler GMRES, whereZn�1 � Vn�1. We will also be interested in the ase of the residual basis[q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄, whih we will all SGMRES/RB, where \RB"refers to \residual basis" (this method has been reently derived and imple-mented also by Yvan Notay).Reursion (4.5) reveals the onnetion between the simpler approah and yetanother minimum residual approah. Let us set pn � A�1vn, Pn � [p1; : : : ; pn℄.Then, left-multiplying (4.5) by A�1 yieldsxn = xn�1 + �npn; �n = hrn�1; Apni; (4.9)or, in matrix form, Xn+1Ln+1;n = �PnDnwith Xn+1 � [x0; : : : ; xn℄. This shows that pn 2 Kn(A; r0) is a diretion vetor:it has the diretion in whih one moves from xn�1 to xn. The step length �nan be determined from one of the formulas on the right-hand side of (4.5) or(4.9). Reall that it follows from the ondition hrn�1; vni = 0, whih enforesthe minimization of krnk on the line � 7! rn�1 � �vn. So, instead of omputingthe oordinates tn of xn � x0 with respet to the olumns of [q1; Zn�1℄ �rst, wean diretly update xn from (4.9). However, this requires that we onstrut the



68 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSdiretion vetor pn (or a salar multiple of it). Now, note that left-multiplying(4.4) by A�1 yields [q1; Zn�1℄ = PnUn: (4.10)If Un is known from (4.4), a reursion for pn an be extrated from this formula.Note that it has the same reurrene oeÆients (stored in the olumns of Un)that are used in the Gram-Shmidt proess in (4.4); so the two reursions an berun in the same loop. The obvious disadvantages of this approah is that we haveto store both all the diretion vetors pn and all the original orthonormal basisvetors vn = Apn. Moreover, any roundo� errors in Un may have a strong e�eton Pn. However, as we will see, this is the prie we have to pay if we want to applythe simple and onvenient 2-term update formulas (4.5) and (4.9) and spend onlyone matrix-vetor (MV) produt per step, namely Azn�1 in (4.4) (or Avn�1 in(4.3) if Zn�1 � Vn�1). The ase Zn�1 � Vn�1 of this method was proposed in[84℄ under the name ATA{variant of GMRES. We will use here the terminologyupdate approah for this ase and, more exatly, re�ned ORTHODIR for thepartiular ase with Zn�1 � Vn�1, sine, as we will see, it is a re�ned versionof the residual norm minimizing ORTHODIR algorithm [33, 110℄. Likewise thease with Zn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whih an be viewed as a re�ned version ofthe ORTHOMIN algorithm [102, 110℄ (or the GCR method of Elman [30, 29℄,and is idential to the GMRESR method [101℄ of van der Vorst and Vuik with thehoie u(0)n = rn), will be referred to as re�ned ORTHOMIN (see our ommentsbelow).The re�ned ORTHODIR and ORTHOMIN algorithms with residual norm min-imization started from the fat that the diretion vetors pn of the minimumresidual method haraterized by (4.2) are ATA{orthonormal to eah other: sineVn = APn, we have P Tn ATAPn = V Tn Vn = I . Beause diretions are only de-termined up to a salar multiple, we might give up the normalization of Vn andhoose instead P Tn ATAPn = V Tn Vn to be a nonsingular diagonal matrix. So,in analogy to (4.4), we an diretly ompute the olumns of Pn = [p1; : : : ; pn℄and Un from (4.10), and omplement this by the expliit suessive evaluation ofVn = APn (whih, at the same time, serves for extending the Krylov subspae).Again, we an view (4.10) as either an Arnoldi proess for an ATA-orthogonalbasis if we hoose Zn�1 � APn�1, or as a Gram-Shmidt implementation of aQR deomposition of [q1; Zn�1℄ with respet to the ATA{inner produt if Zn�1originates elsewhere. The ase where Zn�1 � APn�1, q1 � r0, and Un is unittriangular orresponds to the original ORTHODIR algorithm [33, 110℄; the asewhere Zn�1 � [r1; : : : ; rn�1℄, q1 � r0, and Un is unit triangular yields a version



69of the ORTHOMIN algorithm as proposed by Young and Jea [110℄, whih wasalled GCR by Elman [30℄. Despite the popularity of the name GCR we willmostly use the older name ORTHOMIN here, whih also underlines the analogyto ORTHODIR. Details an also be found in [8℄ (hoosing B = ATA and C = Ithere). The ases with short-term reurrenes have been treated in detail in [59℄and [9℄.However, what we have onealed in these desriptions is that we need a se-ond matrix-vetor produt, namely Avn�1 in ORTHODIR and Arn in OR-THOMIN, to ompute the oeÆients of the orthogonal projetion (i.e., of theGram-Shmidt algorithm). Due to the ATA{orthogonality, in ORTHODIR therelevant projetion of Apn�1 is pn = (I � Pn�1(APn�1)TA)Apn�1, whih withVn�1 = APn�1 may be written as pn = (I�Pn�1V Tn�1A)vn�1. The new vetor vnould be instead of vn = (I � Vn�1V Tn�1)Avn�1 omputed diretly as vn = Apn,whih requires an extra MV. An analogue onsideration holds for ORTHOMIN.So, in this form, these algorithms are not ompetitive. Some remarks on theirstability were drawn in [47℄; we will not over these implementations here.The well-known remedy suggested by Vinsome [102℄ and Eisenstadt, Elman, andShultz [29℄ onsists in omputing and storing both Pn and Vn. This is ahievedby omputing Vn with either the Arnoldi proess (4.3) or with another QR de-omposition of A[r0; r1; : : : ; rn�1℄ analogous to (4.4). But this means that up tothe saling of the bases Pn, Vn, and Zn we return to the re�ned ORTHODIR andre�ned ORTHOMIN algorithms disussed above. The remaining di�erene be-tween Vinsome's ORTHOMIN and our re�ned ORTHOMIN is that we normalizethe residuals before orthogonalizing them, and that we use normalized diretionvetors. The analog is true for the di�erene between the usual implementationof ORTHODIR and our re�ned ORTHODIR. The importane of normalizing theresiduals before the orthogonalization will be seen later.The setions of this hapter are organized as follows. In Setion 1 we analyze�rst the maximum attainable auray of the simpler approah based on (4.3)or (4.4) for vn and (4.7), (4.8) for xn. Then we turn to the update approahbased on (4.3) or (4.4) for vn, (4.10) for pn, and (4.9), (4.5) for xn and rn.To keep the text readable, we assume rounding errors only in seleted, mostrelevant parts of the omputation. The bounds presented in Theorems 4.1 and4.2 show that the onditioning of the matrix [q1; Zn�1℄ plays an important rolein the numerial stability of these shemes. Both theorems give bounds on themaximum attainable auray measured by the normwise bakward error. Whilefor the simpler approah this quantity does not depend on the onditioning of



70 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSA, the bound for the update approah is proportional to �(A) (as we will showin our onstruted numerial example, the bound is attainable). However, thedependene on �(A) is usually an overestimate; in pratie, both the simpler andupdate approahes behave almost equally for the same hoie of the basis. Thisis espeially true for the relative errors of the omputed approximate solutions,where we give essentially the same upper bound. The situation is ompletelyanalogous to results for the GMRES method [88℄ and the MINRES method [79℄given by Sleijpen, van der Vorst and Modersitzki in [92℄.In Setion 2 we derive partiular results for two hoies of the basis [q1; Zn�1℄.First for [q1; Zn�1℄ = [q1; Vn�1℄ leading to Simpler GMRES by Walker andZhou [103℄ and to re�ned ORTHODIR. Then for [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄,whih leads to SGMRES/RB and re�ned ORTHOMIN, respetively. It appearsthat the two hoies lead to truly di�erent behavior in the ondition numberof Un, whih governs the stability of the onsidered shemes. Sine all thesemethods onverge in a �nite number of iterations, we �x the iteration indexn suh that r0 62 AKn�1(A; r0), that is, the exat solution has not yet beenreahed. Based on this we give onditions on the linear independene of thebasis [q1; Zn�1℄. It is known that [r0; : : : ; rn�1℄ an be rank de�ient when theGMRES method stagnates (the breakdown ours in ORTHOMIN and henealso in SGMRES/RB), while this does not happen for [q1; Vn�1℄ (Simpler GM-RES and ORTHODIR are breakdown-free). On the other hand, we show thatwhile the hoie [q1; Zn�1℄ = [q1; Vn�1℄ leads to inherently less numerially sta-ble shemes, the seond seletion [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄ gives rise toonditionally stable implementations provided we have some reasonable resid-ual derease. In partiular, we show that the SGMRES/RB implementation isonditionally bakward stable. Our theoretial results are illustrated by seletednumerial experiments.Throughout the text, we denote by k � k the Eulidean vetor norm and theindued matrix norm, and by k�kF the Frobenius norm. Moreover, for B 2 R
N�n(N � n) of rank n, �1(B) � �n(B) > 0 are the extremal singular values of B,and �(B) = �1(B)=�n(B) is the spetral ondition number. By I we denote theunit matrix of a suitable dimension, by ek (k = 1; 2; : : :) its kth olumn, and welet e � [1; : : : ; 1℄T . We assume the standard model of �nite preision arithmetiwith the unit roundo� u (see Higham [55℄ for details). In our bounds, insteadof distinguishing between several onstants (whih are in fat polynomials in Nand n that an di�er from plae to plae), we use a generi onstant .



1. MAXIMUM ATTAINABLE ACCURACY 71
1. Maximum attainable accuracy of simpler and update approachesIn this setion we analyze the numerial stability of the simpler and updateapproahes formulated in the previous setion. In order to make our analysisreadable, we assume that only the omputations performed in (4.4), (4.8) and(4.10) are a�eted by rounding errors and that the omputed Q-fator in the QRfatorization (4.4) is lose to an orthonormal matrix and has beed omputed ina bakward stable way. Hene we assume that the omputed (orthogonal) fatorVn and the upper triangular fator Un in the QR fatorization (4.4) satisfyA[q1; Zn�1℄ = VnUn + Fn; kFnk � ukAkk[q1; Zn�1℄k; (4.11)and kVn � V̂nk � u, where V̂n is the nearest orthonormal matrix satisfyingV̂ Tn V̂n = I . For simpliity, we will not distinguish between Vn and V̂n and assumethat Vn is exatly orthonormal. For details we refer to [15, 55℄. From [106, 55℄we have for the omputed solution t̂n of (4.8) that(Un +�Un)t̂n = Dne; j�Unj � ujUnj; (4.12)where the absolute value and inequalities are understood omponent-wise. Theapproximation x̂n to x is then omputed asx̂n = x0 + [q1; Zn�1℄t̂n: (4.13)The ruial quantity for the analysis of the maximum attainable auray is thegap between the true residual b � Ax̂n of the omputed approximation and theupdated residual rn obtained from the update formula (4.5) desribing the pro-jetion of the previous residual; see [47, 52℄. In fat, one the true residualbeomes negligible ompared to the true one (and in the algorithms onsideredhere it ultimately will), the gap equals the true residual divided by kAkkx̂nk,whih therefore an be thought of as the bakward error of the ultimate approx-imate solution x̂n (after suitable normalization). Here is our basi result on thisgap for the simpler approah.Theorem 4.1. In the simpler approah, the gap between the true residualb�Ax̂n and the updated residual rn satis�eskb�Ax̂n � rnkkAkkx̂nk � u�([q1; Zn�1℄)�1 + kx0kkx̂nk� :Proof. From (4.13) we have b�Ax̂n = r0 �A[q1; Zn�1℄t̂n = r0 � (VnUn +Fn)(Un + �Un)�1Dne, and (4.5) gives rn = r0 � VnDne. Using the identityI � Un(Un + �Un)�1 = �Un(Un + �Un)�1 and the relation [q1; Zn�1℄(Un +



72 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODS�Un)�1Dne = [q1; Zn�1℄t̂n = x̂n � x0 we an express the gap between b � Ax̂nand rn asb�Ax̂n � rn = (Vn � (VnUn + Fn)(Un +�Un)�1)Dne= (Vn�Un + Fn)(Un +�Un)�1Dne= (Vn�Un + Fn)[q1; Zn�1℄y[q1; Zn�1℄(Un +�Un)�1Dne= (Vn�Un + Fn)[q1; Zn�1℄y(x̂n � x0): (4.14)Taking the norm, onsidering (4.11), and noting that the terms involving Vn�Unand Fn an be subsumed into the generi onstant , we getkb�Ax̂n � rnk � ukAkk[q1; Zn�1℄kk[q1; Zn�1℄yk(kx̂nk+ kx0k): (4.15)Division by kAkkx̂nk onludes the proof. �In the following we analyze the maximum attainable auray of the updateapproah. In aordane with (4.11) we assume that in �nite preision arithmetithe omputed diretion vetors satisfy[q1; Zn�1℄ = PnUn +Gn; kGnk � ukPnkkUnk: (4.16)Note that the norm of the matrix Gn annot be bounded by ukAkk[q1; Zn�1℄kas it is in the ase of the QR fatorization (4.11). As in (4.9) we ompute thenthe approximate solution x̂n aŝxn = x̂n�1 + �npn: (4.17)Theorem 4.2. In the update approah, the gap between the true residualb�Ax̂n and the updated residual rn satis�eskb�Ax̂n � rnkkAkkx̂nk � u�(A)�([q1; Zn�1℄)�1 + kx0kkx̂nk� ;provided that �n � 1� u�(A)�([q1 ; Zn�1℄) > 0.Proof. Sine x̂n = x0 + PnDne = x0 + ([q1; Zn�1℄�Gn)U�1n Dne and rn =r0 � VnDne, we have thatb�Ax̂n � rn = (Vn �A[q1; Zn�1℄U�1n )Dne+AGnU�1n Dne= (�Fn +AGn)U�1n Dne (4.18)due to (4.4). From (4.4) and (4.16), we get Pn = A�1Vn + (A�1Fn � Gn)U�1n .Taking a norm we obtain kPnk � kA�1k + u�(A)kU�1n k + ukPnk�(Un). The



1. MAXIMUM ATTAINABLE ACCURACY 73norm of the residual matrix Gn in (4.16) an hene be estimated askGnk � u�(A)k[q1; Zn�1℄k: (4.19)Owing to (4.17), we have the identity U�1n Dne = U�1n P ynPnDne = U�1n P yn(x̂n �x0), and kU�1n P ynk � ��1n k[q1; Zn�1℄yk following from (4.16). Thus we obtainkU�1n Dnek � ��1n k[q1; Zn�1℄yk(kx̂nk+ kx0k); (4.20)whih together with (4.18), (4.19), and (4.11) proves the statement of the theo-rem. �The bound on the ultimate bakward error given in Theorem 4.2 is worse that theone of Theorem 4.1. We see that for the simpler approah the normwise bakwarderror is on the order of the roundo� unit, whereas for the update approah wehave an upper bound proportional to the ondition number of A. In terms ofthe residual norms, this leads to the bounds involving u�(A)�([q1; Zn�1℄) andu�2(A)�([q1; Zn�1℄) terms for the simpler and update approah, respetively.From Theorems 4.1 and 4.2, we an also estimate the ultimate level of the relative2-norm of the error of both the simpler and update approah. However, as shownbelow, it appears that the update approah leads to the approximate solutionwith essentially the same auray level in the error as the simpler approah.Similar phenomenonwas also observed by Sleijpen, van der Vorst and Modersitzki[92℄ in the symmetri ase for GMRES and MINRES.Corollary 4.3. The gap between the omputed approximate solutions x̂nand exat approximations xn in both the simpler (xn = x0 + [q1; Zn�1℄tn)and update (xn = xn�1 + �npn) approahes an be bounded bykxn � x̂nkkxk � u�(A)�([q1 ; Zn�1℄)kx̂nk+ kx0kkxk ; (4.21)provided that �n � 1� u�(A)�([q1; Zn�1℄) > 0.Proof. For the simpler approah, the result follows diretly from Theorem4.1. For the update approah, using (4.18) we havexn � x̂n = x� x̂n �A�1rn = (�A�1Fn +Gn)U�1n Dneand the statement now follows from (4.11), (4.19) and (4.20). �The bound (4.21) from Corollary 4.3 depends on the quantity (kx̂nk+kx0k)=kxk(or more preisely on kx̂n � x0k=kxk), whih is, however, strongly inuenedby the onditioning of the upper triangular matrix Un. As shown in Setion 2,



74 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSthe matrix Un an be ill-onditioned for a partiular ase [q1; Zn�1℄ = [q1; Vn�1℄leading thus to inherently less numerially stable shemes, whereas the shemeswith [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄ under some assumptions give rise to the well-onditioned triangular matrix Un. In the following lemma we give bounds onkx̂n � x0k in terms of the singular values of the matrix Un.Lemma 4.4. In the simpler approah, we havekx̂n � x0k � k[q1; Zn�1℄kkt̂nk � k[q1; Zn�1℄kk(Un +�Un)�1Dnek;and in the update approah,kx̂n � x0k � kPnDnek � (1 + u�(A))k[q1; Zn�1℄kkU�1n Dnek:The norms of (Un +�Un)�1Dne and U�1n Dne satisfyk(Un +�Un)�1DnekkU�1n Dnek ) � p2 nXk=1 krk�1k�k(Uk)� p2kA�1k nXk=1 ��1k krk�1k�k([q1; Zk�1℄) ; (4.22)provided that �k � 1� u�(A)�([q1 ; Zk�1℄) > 0 for all k = 1; : : : ; n.Proof. Sine eTkDnek = �k and j�kj =pkrk�1k2 � krkk2 � p2krk�1k, wehave k(Un +�Un)�1Dnek � nXk=1 k(Un +�Un)�1Dnekk� p2 nXk=1 krk�1k�k([Un +�Un℄1:k;1:k) ; (4.23)where [Un+�Un℄1:k;1:k denotes the prinipal k�k submatrix of Un+�Un. Owingto (4.12), we an estimate the perturbation of [Un℄1:k;1:k = Uk as k[�Un℄1:k;1:kk �ukUkk. Perturbation theory of singular values shows that�k([Un +�Un℄1:k;1:k) � �k(Uk)� ukUkk� �k(A[q1; Zk�1℄)� ukAkk[q1; Zk�1℄k� �N(A)�k([q1; Zk�1℄)� ukAkk[q1; Zk�1℄k; (4.24)whih, together with (4.23), onludes the proof of the �rst inequality. Theseond inequality is proved analogously. �



1. MAXIMUM ATTAINABLE ACCURACY 75The �rst estimate given in (4.22), whih involves the minimal singular valuesof Uk (k = 1; : : : ; n), is quite sharp. However, the seond estimate relating theminimal singular values of Uk to those of [q1; Zk�1℄ an be a large overestimate,as also observed in our numerial experiments in Setion 2. Using Lemma 4.4we an give the following estimates for the gap between the true and updatedresiduals in the simpler and update approahes.Corollary 4.5. In the simpler approah, the gap between the true residualkb�Ax̂nk and the updated residual rn satis�eskb�Ax̂nk � u�(A)k[q1; Zn�1℄k nXk=1 ��1k krk�1k�k([q1; Zk�1℄) :In the update approah, the same quantity an be estimated askb�Ax̂nk � u�2(A)k[q1; Zn�1℄k nXk=1 ��1k krk�1k�k([q1; Zk�1℄) :Theorems 4.1 and 4.2 indiate that as soon as the bakward error of the approx-imate solution in the simpler approah gets below u�(A)�([q1 ; Zn�1℄), then thedi�erene between the bakward errors in the simpler and update approahesmay beome visible and an be expeted to be up to the order of �(A). Based onour experiene it is diÆult to �nd an example where this di�erene is signi�ant.Similarly to Sleijpen, van der Vorst and Modersitzki [92℄, we use here a model ex-ample, where A = G1DGT2 2 R
100�100 with D = diag(10�8; 2 �10�8; 3; 4; : : : ; 100)and with G1 and G2 being Givens rotations over an angle of �4 in the (1; 10)-planeand the (1; 100)-plane, respetively; �nally, b = e. The numerial experimentswere performed in MATLAB using double preision arithmeti (u � 10�16), andthe zero vetor was hosen as the initial guess x0. In Figure 4.1 we have plot-ted the normwise bakward errors kb � Ax̂nk=(kAkkx̂nk) (solid lines), relative2-norms of the residuals kb � Ax̂nk=kbk (dashed lines) and the relative 2-normsof the errors kx� x̂nk=kxk (dash-dotted lines) for Simpler GMRES and re�nedORTHODIR, respetively. The same quantities for SGMRES/RB and re�nedORTHOMIN are reported in Figure 4.2. We see that the atual bakward errorsand relative residual norms are lose until where they stagnate: for re�ned OR-THODIR and re�ned ORTHOMIN this happens approximately at a level loseto u�(A) for the bakward errors and u�2(A) for the residuals, while for SimplerGMRES and SGMRES/RB we have stagnation on the roundo� unit level. Inontrast, the 2-norms of the errors stagnate on the u�(A) level in all onsideredshemes.
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2. Choice of basis and numerical stabilityIn this setion we disuss the two main partiular hoies for the matrix Zn�1leading to di�erent algorithms for the simpler and update shemes. For the sakeof simpliity, we assume exat arithmeti here. First, we hoose Zn�1 = Vn�1,whih leads to the Simpler GMRES method of Walker and Zhou [103℄ and to there�ned version of ORTHODIR by Young and Jea [110℄, respetively. Hene, wehoose fq1; v1; : : : ; vn�1g as a basis of Kn(A; r0). To be sure that suh a hoieis adequate, we state the following simple lemma.Lemma 4.6. Let v1; : : : ; vn�1 be an orthonormal basis of AKn�1(A; r0) and letr0 62 AKn�1(A; r0). Then the vetors q1; v1; : : : ; vn�1 form a basis of Kn(A; r0).
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relative error (Refined ORTHOMIN)Figure 4.2. The test problem solved by SGMRES/RB and re-�ned ORTHOMIN.Proof. It follows from the assumption r0 62 AKn�1(A; r0) implying thatq1 62 AKn�1(A; r0) = spanfv1; : : : ; vn�1g. �Note that if r0 2 AKn(A; r0), then the ondition (4.2) yields xn = A�1b, rn = 0,and any implementation of a minimum residual method will terminate. Lemma4.6 ensures that it makes sense to build an orthonormal basis Vn of AKn(A; r0)by the suessive orthogonalization of the olumns of the matrix A[q1; Vn�1℄ via(4.4). It reets the fat that, for any initial residual r0, both Simpler GMRESand ORTHODIR onverge (in exat arithmeti) to the exat solution; see [110℄.However, as observed by Liesen, Rozlo�zn��k and Strako�s [66℄, this hoie of thebasis is not very suitable from the stability point of view. This shortoming isreeted by the unbounded growth of the ondition number of [q1; Vn�1℄ disussednext. The upper bound was also derived in the paper [103℄.



78 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSTheorem 4.7. Let r0 62 AKn�1(A; r0). Then the ondition number of [q1; Vn�1℄satis�es kr0kkrn�1k � �([q1; Vn�1℄) � 2 kr0kkrn�1k :Proof. Sine rn�1 = (I � Vn�1V Tn�1)r0, it is easy to see that rn�1 is theresidual of the least squares problem Vn�1y � r0. The statement follows fromTheorem 3.2 of [66℄. �The onditioning of [q1; Vn�1℄ is thus related to the onvergene of the method; inpartiular, it is inversely proportional to the atual relative norm of the residual.Hene, if the residual is small enough, Simpler GMRES and re�ned ORTHODIRbehave unstably. In pratie, this diÆulty an be ounterated by frequentrestarts.Now we turn to the seond hoie, Zn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whih leads toSGMRES/RB (whih we propose here as a more stable ounterpart of SimplerGMRES) and to the re�ned version of ORTHOMIN by Vinsome [102℄ knownalso under the name GCR; see Eisenstat, Elman and Shultz [30, 29℄. We have[q1; Zn�1℄ = RnB�1n , where Bn � diag(kr0k; : : : ; krn�1k), i.e., we hoose saledresiduals r0; : : : ; rn�1 as the basis of Kn(A; r0). To be sure that suh a hoie isadequate, we state the following result.Lemma 4.8. Let v1; : : : ; vn�1 be an orthonormal basis of AKn�1(A; r0) andlet r0 62 AKn�1(A; r0) and rk = (I � VkV Tk )r0, where Vk � [v1; : : : ; vk℄, k =1; 2; : : : ; n� 1. Then the following statements are equivalent:(1) krkk < krk�1k for all k = 1; : : : ; n� 1,(2) r0; : : : ; rn�1 are linearly independent.Proof. Sine r0 62 AKn�1(A; r0) = R(Vn�1), rk 6= 0 for all k = 0; 1; : : : ; n�1. It is lear that krkk < krk�1k if and only if hrk�1; vki 6= 0. If that holds for allk = 1; : : : ; n�1 the diagonal matrixDn�1 is nonsingular. Using the relation (4.6)we �nd that Rn[Ln;n�1; en℄ = [Vn�1Dn�1; rn�1℄. Sine rn�1 ? Vn�1, the matrix[Vn�1Dn�1; rn�1℄ has orthogonal nonzero olumns, and hene its rank equalsn. Moreover, rank([Ln;n�1; en℄) = n and thus rank(Rn) = n, i.e., r0; : : : ; rn�1are linearly independent. Conversely, from the same matrix relation we �ndthat if r0; : : : ; rn�1 are linearly independent, then rank([Vn�1Dn�1; rn�1℄) = n,and hene Dn�1 is nonsingular, whih proves that krkk < krk�1k for all k =1; : : : ; n� 1. �



2. CHOICE OF BASIS AND NUMERICAL STABILITY 79Therefore if the method does not stagnate, i.e., if the 2-norms of the residualsr0; : : : ; rn�1 are stritly monotonously dereasing, then r0; : : : ; rn�1 are linearlyindependent. In this ase, we an build an orthonormal basis Vn of AKn(A; r0)by the suessive orthogonalization of the olumns of ARnB�1n via (4.4). Ifr0 2 AKn�1(A; r0), we have an exat solution of (4.1), and the method stopswith xn�1 = A�1b.Several onditions for the non-stagnation of the minimum residual method havebeen given in the literature. For example, Eisenstat, Elman and Shultz [29, 30℄show that GCR (and hene any minimum residual method) does not stagnate ifthe symmetri part of A is positive de�nite, i.e., if the origin is not ontainedin the �eld of values of A. See also Greenbaum and Strako�s [50℄ for a di�erentproof, and Eiermann and Ernst [28℄. Several other onditions an be found inSimonini and Szyld [91℄ and the referenes therein. If stagnation ours, theresiduals are no longer linearly independent, and thus the method prematurelybreaks down. In partiular, if 0 2 F(A), hoosing x0 suh that r0 2 F(A) leadsto a breakdown in the �rst step. This was �rst pointed out by Young and Jea[110℄ with a simple 2� 2 example.However, as shown in the following theorem, when the minimum residual methoddoes not stagnate, the olumns of RnB�1n are a reasonable hoie for the basis ofKn(A; r0).Theorem 4.9. If r0 62 AKn�1(A; r0), the ondition number of RnB�1n satis�es1 � �(RnB�1n ) � pnn; n �vuut1 + n�1Xk=1 krk�1k2 + krkk2krk�1k2 � krkk2 : (4.25)Proof. From (4.6) it follows thatRnB�1n [Qn;n�1; en℄ = [Vn�1; rn�1krn�1k ℄; Qn;n�1 � BnLn;n�1D�1n�1:Sine [Vn�1; rn�1krn�1k ℄ is an orthonormal matrix, we have from Theorem 3.3.16 of[58℄ 1 = �n([Vn�1; rn�1krn�1k ℄) � �n(RnB�1n )k[Qn;n�1; en℄k� �n(RnB�1n )k[Qn;n�1; en℄kF :
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CHAPTER 5
Conclusions and open questionsIn this thesis we studied the numerial behavior of several iterative methods forthe solution of systems of linear algebrai equations. In Chapter 3 we looked atthe numerial behavior of ertain inexat saddle point solvers. In partiular, forseveral mathematially equivalent implementations, we studied the inuene ofinexat solution of inner systems and estimate their maximum attainable au-ray. When onsidering the outer iteration proess, our analysis lead to resultssimilar to ones whih an be obtained assuming exat arithmeti. The situa-tion was di�erent, when we looked at the residuals in the saddle point system.We showed that some implementations lead ultimately to residuals on the levelof roundo� unit independently on the fat that the inner systems were solvedinexatly. Indeed, our results on�rm that the generi and atually the heap-est implementations deliver the approximate solutions, whih satisfy either theseond or the �rst blok equation to the working auray. In addition, theimplementations with orreted diret substitution are also very attrative. Wegave a theoretial explanation for the behavior whih was probably observed oris already taitly known. The implementations that we point out as optimal areatually those, whih are widely used and suggested in appliations. It appearsthat, when measured in terms of the errors, the maximum attainable auraylevel is similar for all onsidered implementations and it is proportional to thebakward error tolerane of inner systems.In Chapter 4 we studied the numerial behavior of several minimum residualmethods mathematially equivalent to GMRES. Two general formulations wereanalyzed: the simpler approah that does not require an upper Hessenberg fa-torization and the update approah whih is based on generating a sequene ofappropriately omputed diretion vetors. It was shown that for the simpler ap-proah our analysis leads to an upper bound for the bakward error proportionalto the roundo� unit, whereas for the update approah the same quantity an bebounded by a term proportional to the ondition number of A. Although our85



86 CHAPTER 5. CONCLUSIONS AND OPEN QUESTIONSanalysis suggests that there maybe a di�erene between both approahes up tothe order of �(A), in pratie they behave very similarly and it is very diÆult to�nd an example with a signi�ant di�erene in the limiting auray. Moreover,when looking at the errors, we note that both approahes lead essentially to thesame auray of the omputed approximate solutions.We indiated that the hoie of the basis [q1; Zn�1℄ is the most important issuefor the stability of the onsidered shemes. Our analysis supports the well-known fat that, even when implemented with the best possible orthogonalizationtehniques, Simpler GMRES and ORTHODIR are inherently less stable due tothe hoie [q1; Zn�1℄ = [q1; Vn�1℄. The situation beomes signi�antly better,when we use the residual basis [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄. This hoie leads tothe popular GCR, ORTHOMIN and GMRESRmethods, whih are widely used inappliations. Assuming some reasonable residual derease (whih happens almostalways in �nite preision arithmeti), we showed that this sheme is quite eÆientand proposed a onditionally bakward stable variant (alled SGMRES/RB here).Our theoretial results in a sense justify the use of the GCR method in pratialomputations.There are several open problems onneted to the topi of this thesis.
Various stopping criteria for inner systems. The analysis in Chapter3 is based on the bakward error stopping riterion in inner systems. It ouldbe interesting to ompare other stopping riteria based, e.g., on the relativeresiduals or estimates of energy errors in the Shur omplement method. Therelation between the A-norm of x�xk and the BTA�1B-norm of y�yk an leadto a stopping riterion based on the energy norm of x � xk. However, it is notompletely lear how to do this, when the systems with A are not solved exatly.
Corrected substitution in stationary iterative methods. We saw inChapter 3 that for the Shur omplement redution and null-spae projetionmethods, it is more preferable to update the approximation xk+1 using the or-reted diret substitution than to ompute it diretly. Analogous results holdalso for stationary iterative methods. Consider the system Ax = b with a non-singular matrix A and its splitting A = M � N , where M is also nonsingular.A stationary iterative method then generates the approximations to x satisfyingMxk+1 = Nxk + b starting from some x0. Higham and Knight [56℄ analyzedthis implementation in �nite preision arithmeti, and they showed that thelimiting auray depends on the maximum relative norm of the approximatesolutions �xi (i = 0; : : : ; k). However, it is muh more bene�ial, in suh a ase,



87rather than ompute xk+1 = M�1(Nxk + b), to use the \orreted" formulaxk+1 = xk +M�1rk, where rk = b � Axk. We saw in Setion 1.4 of Chapter 3that the �nal level of the residual f � A�xk �B�yk does not depend on the max-imum norm of the iterates during the whole iteration proess but only on thosein a few last iterations. The similar observation an be made also in the ase ofthe \orreted" implementation of the stationary iteration, and the idea an bealso extended to two-stage iterative methods, e.g., when applying the SIMPLEmethod for the solution of uid ow problems (see, e.g., [81℄).
Backward error analysis of segregated methods. In Setion 4 of Chap-ter 3 we interpret the inexat solution omputed with the Shur omplementredution method (using the generi update) as an exat solution of the saddlepoint problem with a perturbed upper-left matrix blok. The similar bakwarderror analysis should be performed also for other implementations of the Shuromplement redution method and for the null-spae projetion method. More-over, the analysis of the null-spae projetion should onsider also a partiularprojetion method for omputing the diretion vetors.
Preconditioned residual basis. In Chapter 4, we did not onsider theissue of preonditioning or, we assume, that the system Ax = b is already pre-onditioned. It does not make muh sense to preondition the methods usingthe basis [q1; Vn�1℄ suh as Simpler GMRES or ORTHODIR due to their inher-ent instability. One an restart the method to overome this problem, but notethat the restart is neessary when the method beomes unstable, i.e., when itonverges fast! It seems reasonable to use (�xed or exible) preonditioning inthe ase of the residual basis (the preonditioned SGMRES/RB and GCR). Itis sometimes observed that the preonditioned residual basis of GCR (i.e., GM-RESR [101℄) is more preferable than, e.g., preonditioned GMRES (with a �xedpreonditioner) or exible GMRES [86℄, whih use the preonditioned orthonor-mal basis of Kn(A; r0). Moreover, faster onvergene ould be observed whenusing preonditioned residuals. This issue needs to be analyzed further.
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