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AbstraktJak je zn�amo, zaokrouhlova
�� 
hyby a nep�resn�e �re�sen�� vnit�rn��
h �uloh maj�� vliv nanumeri
k�e 
hov�an�� itera�
n��
h metod v aritmeti
e s kone�
nou p�resnost��; obe
n�esni�zuj�� jeji
h ry
hlost konvergen
e a ovliv�nuj�� kone�
nou p�resnost spo�
ten�eho�re�sen��. V pr�a
i se zab�yv�ame anal�yzou maxim�aln�� dosa�ziteln�e p�resnosti n�ekter�y
hitera�
n��
h metod pro �re�sen�� soustav line�arn��
h algebrai
k�y
h rovni
.Dizerta
e je rozd�elena na dv�e �
�asti. Prvn�� z ni
h obsahuje anal�yzu limitn�� p�resnostimetod krylovovsk�y
h podprostor�u pro �re�sen�� rozs�ahl�y
h �uloh sedlov�y
h bod�u.Uva�zujeme dva typy segregovan�y
h metod: metodu reduk
e na S
hur�uv dopln�eka metodu projek
e na nulov�y prostor mimodiagon�aln��ho bloku. Ukazuje se, �zev�yb�er vzor
e pro zp�etnou substitu
i m�a vliv na maxim�aln�� dosa�zitelnou p�resnostp�ribli�zn�eho �re�sen�� spo�
ten�eho v aritmeti
e s kone�
nou p�resnost��.Druh�a �
�ast je v�enov�ana anal�yze numeri
k�eho 
hov�an�� n�ekter�y
h metod mini-m�aln��
h rezidu��, kter�e jsou matemati
ky ekvivalentn�� metod�e zobe
n�en�y
h mi-nim�aln��
h rezidu�� GMRES. Srovn�av�ame dva hlavn�� postupy: jeden, kde p�ribli�zn�e�re�sen�� je vypo�
teno ze soustav s horn�� troj�uheln��kovou mati
��, a jeden, kdeje p�ribli�zn�e �re�sen�� upravov�ano pomo
�� jednodu
h�eho rekurentn��ho vzor
e. Uka-zuje se, �ze v�yb�er b�aze m�a vliv na numeri
k�e 
hov�an�� v�ysledn�e implementa
e.Zat��m
o metody Simpler GMRES a ORTHODIR jsou m�en�e stabiln�� d��ky �spatn�epodm��n�enosti zvolen�e b�aze, b�aze zkonstruovan�a z rezidu�� m�u�ze b�yt dob�re podm��-n�en�a, jestli�ze jsou normy rezidu�� dostate�
n�e klesaj��
��. Tyto v�ysledky vedou k nov�eimplementa
i, kter�a je podm��n�en�e zp�etn�e stabiln��, a v jist�em smyslu i vysv�etluj��experiment�aln�e ov�e�ren�y fakt, �ze metoda GCR (ORTHOMIN) d�av�a v prakti
k�y
haplika
��
h velmi p�resn�e aproxima
e �re�sen��.Kl���
ov�a slova. Rozs�ahl�e line�arn�� soustavy, metody krylovovsk�y
h podprostor�u,�ulohy sedlov�eho bodu, metoda reduk
e na S
hur�uv dopln�ek, metoda projek
e nanulov�y prostor mimodiagon�aln��ho bloku, metody minim�aln��
h rezidu��, numeri
k�astabilita, anal�yza zaokrouhlova
��
h 
hyb.iii





Abstra
tIt is known that inexa
t solution of inner systems and rounding errors a�e
tthe numeri
al behavior of iterative methods in �nite pre
ision arithmeti
. Inparti
ular, they slow down their 
onvergen
e rate and have an e�e
t on theultimate a

ura
y of the 
omputed solution. Here we fo
us on the analysis of themaximum attainable a

ura
y of several iterative methods for solving systems oflinear algebrai
 equations.The thesis is divided into two parts. The �rst part is devoted to the analy-sis of Krylov subspa
e solvers applied to the large-s
ale saddle point problems.Two main representatives of segregated solution approa
hes are analyzed: theS
hur 
omplement redu
tion method and the null-spa
e proje
tion method. Weshow that the 
hoi
e of the ba
k-substitution formula 
an 
onsiderably in�uen
ethe maximum attainable a

ura
y of approximate solutions 
omputed in �nitepre
ision arithmeti
.In the se
ond part we analyze numeri
al behavior of several minimum residualmethods, whi
h are mathemati
ally equivalent to the GMRES method. Twomain approa
hes are 
ompared: the approa
h, whi
h 
omputes the approximatesolution from an upper triangular system, and the approa
h where the approx-imate solutions are updated with a simple re
ursion formula. We show that adi�erent 
hoi
e of the basis 
an signi�
antly in�uen
e the numeri
al behaviorof resulting implementation. While Simpler GMRES and ORTHODIR are lessstable due to ill-
onditioning of 
hosen basis, the residual basis remains well-
onditioned when we have a reasonable residual norm de
rease. These resultslead to a new implementation, whi
h is 
onditionally ba
kward stable, and ina sense explain an experimentally observed fa
t that the GCR (ORTHOMIN)method delivers in pra
ti
al 
omputations very a

urate approximate solutionswhen it 
onverges fast enough without stagnation.v



Key words. large-s
ale linear systems, Krylov subspa
e methods, saddle pointproblems, S
hur 
omplement redu
tion, null-spa
e proje
tion method, minimumresidual methods, numeri
al stability, rounding error analysis.
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ÀííîòàöèÿÈçâåñòíî, ÷òî íåàêêóðàòíûå ðåøåíèÿ âíóòðåííèõ ïðîáëåì è îøèáêè îêðóã-ëåíèÿ îòðàæàþòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèþ èòåðàöèîííûõ ìåòîäîâ.Îíè êîíêðåòíî çàòîðìîçÿò èõ ñêîðîñòü ñõîäèìîñòè è îêàçûâàþò âëèÿíèåíà �èíàëüíóþ àêêóðàòíîñòü âû÷èñëåííîãî ðåøåíèÿ. Ìû çäåñü çàíèìàåìñÿàíàëèçîì ìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè íåêîòîðûõ èòåðàöèîí-íûõ ìåòîäîâ äëÿ ðåøåíèÿ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé.Ýòà äèññåðòàöèÿ ðàçäåëåíà íà äâå ÷àñòè. Ïåðâàÿ çàíèìàåòñÿ àíàëèçîì ëè-ìèòíîé àêêóðàòíîñòè ìåòîäîâ ïðîñòðàíñòâ Êðûëîâà äëÿ ðåøåíèÿ áîëüøèõñèñòåì ñåäåëüíûõ òî÷åê. Ìû ðàññìàòðèâàåì äâà òèïû ñåãðåãàöèîííûõ ìåòî-äîâ: ìåòîäîì ïðåîáðàçîâàíèÿ íà äîïîëíåíèå Øóðà è ìåòîäîì ïðîåêöèè íàÿäðî íåäèàãîíàëüíîãî áëîêà. Ìû óêàçûâàåì, ÷òî âûáîð �îðìóëû îáðàòíîéïîäñòàíîâêè îòðàæàåòñÿ íà ìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè ïðè-áëèçèòåëüíîãî ðåøåíèÿ âû÷èñëåííîãî â àðè�ìåòèêå ñ êîíå÷íîé òî÷íîñòüþ.Âòîðàÿ ÷àñòü ñîäåðæèò àíàëèç âû÷èñëèòåëüíîãî ïîâåäåíèÿ íåñêîëüêèõ ìå-òîäîâ ìèíèìàëüíûõ íåâÿçîê, êîòîðûå ìàòåìàòè÷åñêè ýêâèâàëåíòíûå ìåòî-äó ¾GMRES¿. Ìû ñðàâíèâàåì äâà ãëàâíûå ìåòîäû: îäèí, êîòîðûé îïðåäå-ëÿåò ïðèáëèæ¼ííîå ðåøåíèå èç ñèñòåìû ñ âåðõíåé òðåóãîëüíîé ìàòðèöîé,è îäèí, ãäå ïðèáëèæ¼ííîå ðåøåíèå êîððåêòèðîâàííîå ñ ïîìîùüþ ïðîñòîéðåêóððåíòíîé �îðìóëû. Ìû óêàçûâàåì, ÷òî âûáîð áàçû îòðàæàåòñÿ íà âû-÷èñëèòåëüíîì ïîâåäåíèè êîíå÷íîãî ìåòîäà. Ïîêà ìåòîäû ¾Simpler GMRES¿è ¾ORTHODIR¿ ìåíåå ñòàáèëüíûå çà ñ÷åò ïëîõî îáóñëîâëåííîé áàçû, áàçàíåâÿçîê ìîæåò áûòü õîðîøî îáóñëîâëåííàÿ, åñëè íîðìû íåâÿçîê äîñòàòî÷íîñíèæàþòñÿ. Ýòè ðåçóëüòàòû âåäóò ê íîâîìó ìåòîäó, êîòîðûé óñëîâíî îáðàò-íî ñòàáèëüíûé, è â îïðåäåëåííîì ñìûñëå îáúÿñíÿþò ýêñïåðèìåíòàëüíî óäî-ñòîâåðåííûé �àêò, ÷òî ìåòîä ¾GCR¿ (òàêæå èçâåñòíûé êàê ¾ORTHOMIN¿)äà¼ò â ïðàêòè÷åñêèõ àïïëèêàöèÿõ î÷åíü àêêóðàòíûå àïïðîêñèìàöèè ðåøå-íèÿ. vii
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CHAPTER 1
IntroductionConsider a system of linear algebrai
 equations in the formAx = b; (1.1)where A is an N�N nonsingular matrix and b is a right-hand side ve
tor. Usuallywe assume that A is large and sparse as it is, e.g., when A is a dis
rete repre-sentation of some partial di�erential operator. We are looking for the solution of(1.1) or for its suÆ
iently a

urate approximation.The methods for solving (1.1) are usually 
lassi�ed as dire
t and iterative. Di-re
t methods are mostly based on the su

essive elimination of unknowns. Theyfa
torize the system matrix (with suitably ordered rows or 
olumns), e.g., intothe produ
t of lower and upper triangular matri
es as in the Gaussian elimina-tion, or to the produ
t of an orthogonal and a triangular matrix as in the QRfa
torization. The solution of (1.1) 
an be then found by solving systems withthese fa
tors. In general, dire
t methods are well suited for dense and moderatelylarge systems. However, when solving a large sparse system, the number of newly
reated non-zero elements in both fa
tors 
an heavily a�e
t the 
omputationaltime and storage requirements. In addition, even though dire
t methods deliverin theory the exa
t solution, there is no need for su
h an a

ura
y in pra
ti
edue to un
ertain data or dis
retization errors.Therefore, iterative methods be
ame very popular when solving sparse systems.An iterative method for the solution of (1.1) generates a sequen
e of approx-imations xk so that they ideally 
onverge to the exa
t solution. The systemmatrix need not to be expli
itly stored. In ea
h iteration we need only to per-form a matrix-ve
tor multipli
ation. Moreover, the approximations 
onvergeoften monotonously (or almost monotonously) in some �xed norm and so we 
anstop the iteration pro
ess when the approximation is a

urate enough. However,the 
onvergen
e rate of iterative methods 
an be slow in general (depending onproperties of the system) and thus hybrid te
hniques 
ombining the iterative and1



2 CHAPTER 1. INTRODUCTIONdire
t approa
h, su
h as pre
onditioned iterations, are widely used to make thepro
ess more eÆ
ient.In general, a solution method (no matter if a dire
t or iterative one) 
an beinterpreted as a solution of a sequen
e of subproblems whi
h are simpler to solve.In dire
t methods we 
an identify following subproblems: the fa
torization ofthe system matrix and the solution of systems with 
omputed fa
tors. In ea
hstep of an iterative method, we multiply a ve
tor by the system matrix andoptionally solve the system with a pre
onditioner whi
h 
an be also regardedas the subproblems solved repeatedly in the iteration loop. E.g., the matrix-ve
tor multipli
ation 
an involve the solution of an inner system as in the S
hur
omplement redu
tion method whi
h we will dis
uss later.
1. The state of the artFrom now on we restri
t ourselves to iterative methods. In pra
ti
e, the 
ompu-tations are a�e
ted by errors. They are never performed exa
tly due to roundingerrors and some of them are done inexa
tly with a pres
ribed level of a

ura
y,espe
ially when 
omputations with the working a

ura
y 
ould be a waste oftime and resour
es. E.g., matrix-ve
tor produ
ts may involve a solution of innersystems, whi
h (being large and sparse) 
an be solved inexa
tly with anotheriterative method. Pre
onditioning 
an be also applied through some iterativepro
ess. Usually, a method is 
alled inexa
t if some involved subproblems aresolved only approximately even though we assume exa
t arithmeti
. Roundingerrors 
an also 
onsiderably a�e
t the behavior of iterative methods. Sin
e thebehavior of inexa
t iterative methods and \exa
t" methods in �nite pre
isionarithmeti
 is similar, we will not stri
tly distinguish between the sour
es of er-rors and we will treat them 
ommonly in a uni�ed approa
h in the followingdis
ussion.When an inexa
tness is taken into a

ount, there are several important questionswhi
h need to be answered. In the following we give a brief overview of the stateof art in this �eld (in
luding results in �nite pre
ision arithmeti
). Generally theinexa
tness introdu
ed in an iterative method has two main e�e
ts:� The errors 
aused by inexa
t 
omputations are propagated throughoutthe iterative pro
ess. Ideally the error propagation should be restrainedso that the lo
al errors are not magni�ed. There is a limit in the a
-
ura
y whi
h 
annot be ex
eeded and it is usually 
alled the maximumattainable (or limiting) a

ura
y.



1. THE STATE OF THE ART 3� The 
onvergen
e of an inexa
t iterative method 
an be delayed withrespe
t to the 
onvergen
e of the same method, where all 
omputationsare performed exa
tly. We may ask how many additional iterationsshould be performed su
h that the same a

ura
y is attained as in theideal (exa
t) 
ase.In this thesis we fo
us on the limiting a

ura
y of inexa
t iterative methods. Thee�e
ts of inexa
t matrix-ve
tor multipli
ations in iterative methods (also referredas relaxed methods) on the maximum attainable a

ura
y were studied simulta-neously by van den Eshof and Sleijpen [97℄, and by Simon
ini and Szyld [90℄.Their analysis explains the experimental results of Bourass and Frayss�e [18℄ (thereport with an extensive experimental basis was published in 2000) who proposeda relaxation strategy for the a

ura
y of the 
omputed matrix-ve
tor produ
t.They have shown that to a
hieve the pres
ribed a

ura
y of the 
omputed solu-tion we need to 
ompute the matrix-ve
tor produ
t with the a

ura
y (measuredby the ba
kward error) inversely proportional to the a
tual residual norm. Thepapers [97, 90℄ provide the theoreti
al support for this strategy further devel-oped in [98℄. This topi
 is 
losely related to the 
exible pre
onditioning, see,e.g., [11, 43, 76, 90, 39℄. Here we try to adopt the ba
kward error analysis,widely used in the study of rounding errors, and we analyze the e�e
ts of in-exa
t 
omputations on the limiting a

ura
y of 
ertain iterative methods. The
omputations are performed in the presen
e of rounding errors while solutionsto 
ertain subproblems are done with more relaxed a

ura
y. We want to knowhow the inexa
tness of these inner systems together with the errors 
aused byroundo� a�e
t the behavior of the 
onsidered algorithms. It appears that somemeasures of the a

ura
y are ultimately on the level proportional to the unitroundo�, while other measures depend on the a

ura
y of inner systems.The problem of numeri
al stability of 
lassi
al iterative methods was addressedin several papers. The �rst analyzes 
arried out by Golub [40℄ and Lynn [69℄provide statisti
al and non-statisti
al results for the se
ond order Ri
hardsonand SOR method. The statisti
al error analysis of 
lassi
al iterative methodswas also performed by Arioli and Romani [5℄ 
larifying the relation between the
onditioning of the pre
onditioned system matrix and the 
onvergen
e rate ofthe iterative method. In [56℄ Higham and Knight give the forward and ba
kwarderror analysis of a general one-step stationary method. Their analysis amongother things shows that the a

ura
y of the 
omputed solution strongly dependson the os
illations of norms of the iterates whi
h is a 
ommon observation not



4 CHAPTER 1. INTRODUCTIONonly in the 
ase of 
lassi
al iterative methods. Moreover, even though the 
on-vergen
e is driven by the spe
tral radius of the iteration matrix, the limitinga

ura
y depends rather on the norm of its powers whi
h 
an be arbitrarily largein the early stage of the iterative pro
ess. This was observed by Hammarling andWilkinson [53℄. The stability of 
lassi
al iterative methods was also analyzed byWo�zniakovski in [107, 108℄. He proved the forward stability of 
lassi
al meth-ods like Ja
obi, Ri
hardson, Gauss-Seidel and SOR (for symmetri
 systems withthe Property A) and Chebyshev method (for symmetri
 positive de�nite sys-tems). However, the Chebyshev method appeared to be not normwise ba
kwardstable. In [41℄ Golub and Overton dis
uss the 
onvergen
e rate of the se
ondorder Ri
hardson and Chebyshev method. They 
onsider the inexa
t solutionof inner systems with uniformly bounded relative residuals. The a

ura
y ofthe 
omputed solution in the Chebyshev method is further analyzed by Giladi,Golub and Keller [37℄ who show the optimality of the uniform toleran
e used in[41℄. When the system is solved by the 
lassi
al iterative method in ea
h stepwe must solve a simpler system indu
ed by the splitting of the system matrix.However, these systems 
an be also solved iteratively. These methods, referredto as two-stage methods, were addressed, e.g., in [73, 64, 36℄.One of the most important result in the study of Krylov subspa
e methods is dueto Paige [77℄. He provides the analysis of the behavior of the symmetri
 Lan
zosalgorithm [65℄ in the presen
e of rounding errors. This algorithm is 
losely relatedto the 
onjugate gradient method by Hestenes and Stiefel [54℄. It was �rst studiedby Wo�zniakowski [109℄ and Bollen [17℄. Wo�zniakowski shows that this method
onverges in �nite pre
ision arithmeti
 at least linearly with the 
onvergen
e ratesimilar to the steepest des
ent method. However, his analysis does not re
e
t thereality very well, sin
e the 
onvergen
e of the 
onjugate gradient method 
annotbe 
hara
terized lo
ally but its a
tual behavior depends on the whole iterationpro
ess; see, e.g., [99, 68℄ and the referen
es therein. The new insight into thisproblem was brought by Greenbaum [45℄ and further developed together withStrako�s [95, 49℄. It appears that the �nite pre
ision Lan
zos pro
ess as well asthe �nite pre
ision 
onjugate gradient method behave as their exa
t 
ounterpartsapplied to the matrix of (possibly mu
h) larger dimension with the eigenvalues
lustered near the eigenvalues of the original matrix. This issue was furtherdis
ussed by Notay in [75℄.The analysis of limiting a

ura
y of some 
lasses of iterative methods 
an be per-formed in rather general setting without referring to any parti
ular method. The



2. ORGANIZATION OF THE THESIS 5methods based on the 
oupled two-term re
urren
es were analyzed by Green-baum in [46, 47℄. The papers fo
us mainly on the 
onjugate gradient methodbut the analysis holds for a larger set of methods. In parti
ular, the results ofGreenbaum show that the highly irregular 
onvergen
e behavior (expressed bythe os
illations of norms of iterates) observed in the 
ase of non-optimal iterativemethods (su
h as BiCG [35℄ or CGS [93℄) 
an have an unfavorable e�e
t on thelimiting a

ura
y of the 
omputed solution. A similar phenomenon is mentionedalso by van der Vorst in [100℄, where the loss of a

ura
y is explained by os
illa-tions of residual norms. On the other hand, su
h os
ilations do not o

ur (or 
anbe a priori bounded) in the 
ase of optimal methods su
h as 
onjugate gradientsand 
onjugate residuals [94℄ applied to symmetri
 positive de�nite problems, orin the 
ase of residual minimizing methods (Orthodir [110℄, Orthomin [102℄,GCR [29℄) for general nonsymmetri
 systems. The numeri
al stability of various(equivalent) methods using short re
urren
es was further studied by Gutkne
htand Strako�s in [52℄ and by Sleijpen, van der Vorst and Modersitzki in [92℄. In[51℄ Gutkne
ht and Rozlo�zn��k dis
uss the e�e
t of residual smoothing on thelimiting a

ura
y.Finally we survey the results for the �nite pre
ision behavior of nonsymmetri
Krylov subspa
e methods with the full-term re
urren
es su
h as GMRES [88℄.The Householder implementation of the underlying Arnoldi pro
ess [6℄ is quitestraightforward to analyze, see the paper by Drko�sov�a, Greenbaum, Rozlo�zn��kand Strako�s [27℄, and by Arioli and Fassino [4℄. This is due to the almost exa
torthogonality of the 
omputed Krylov subspa
e basis. However, when we use the
heaper modi�ed Gram-S
hmidt implementation, the orthogonality is graduallylost during the iteration pro
ess. The loss of orthogonality however goes handin hand with the de
rease of the ba
kward error of the a
tual 
omputed solutionas observed by Greenbaum, Rozlo�zn��k and Strako�s in [48℄ and further analyzedby Paige, Rozlo�zn��k and Strako�s in [80, 78℄. For more details see [67℄ and thereferen
es therein.
2. Organization of the thesisThis thesis is divided into two main parts and is organized as follows. Chapter3, whi
h is based on the papers [61, 60℄, is devoted to the analysis of inexa
tmethods for solving saddle point problems of the form� A BBT 0��xy� = �f0� :



6 CHAPTER 1. INTRODUCTIONA brief overview on saddle point problems is presented in Chapter 2. We ana-lyze two segregated methods based on the transformation of the whole inde�niteproblem to a redu
ed system with more preferable properties (smaller dimension,positive (semi)de�niteness). The redu
ed system is solved by a suitable itera-tive method giving the approximations to one of the blo
k 
omponents of thesolution ve
tor (x or y). The remaining 
omponent is 
omputed via some ba
k-substitution formula. We 
onsider three di�erent but mathemati
ally equivalentformulas. In ea
h iteration we have to solve either a nonsingular system with A,or a full rank least squares problem with B. Sin
e su
h systems are not usuallysolved exa
tly, we assume here that they are solved with a pres
ribed ba
kwarderror and study the e�e
t on the maximum attainable a

ura
y of the solutionmethod together with the e�e
ts of rounding errors. Su
h inexa
t methods havebeen also 
onsidered in many papers but most of them analyzed the delay of 
on-vergen
e; see the referen
es in Chapter 3. Here we provide a qualitative analysisof the maximum attainable a

ura
y of the 
omputed solution measured by trueresiduals in the saddle point system, by true residuals in redu
ed systems andby forward errors of the 
omputed solutions. In addition, we show whi
h residu-als (and how) 
an be a�e
ted by the possibly irregular 
onvergen
e behavior inthe 
ase of the nonsymmetri
 blo
k A. The theoreti
al results are illustrated onnumeri
al experiments.Chapter 4, based on the paper [62℄, is devoted to the analysis of several residualminimizing Krylov subspa
e methods, whi
h are mathemati
ally equivalent tothe GMRES method [88℄. In 
ontrast to GMRES, they, in the nth iteration,build an orthonormal basis of AKn(A; r0) instead of Kn(A; r0): Kn(A; r0) de-notes the nth Krylov subspa
e generated by the matrix A and the ve
tor r0.Two approa
hes are 
ompared: the approa
h, whi
h 
omputes the approximatesolution from an upper triangular system, and the approa
h, where the approx-imate solutions are updated step by step with a simple re
ursion formula. We
onsider a general basis to generate the orthonormal basis of AKn(A; r0), andit appears that, while Simpler GMRES and ORTHODIR are less stable due toill-
onditioning of the 
hosen basis, the residual basis 
an be well-
onditioned,when we have a reasonable residual norm de
rease. These results lead to a newimplementation, whi
h is 
onditionally ba
kward stable, and to the well knownGCR (ORTHOMIN) method, and in a sense explain an experimentally observedfa
t that GCR (ORTHOMIN) delivers very a

urate approximate approximatesolutions in pra
ti
al appli
ations. The theoreti
al results are illustrated on nu-meri
al experiments.
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CHAPTER 2
Saddle point problemsThe solution of large-s
ale systems in the saddle point form attra
ted a lot ofattention in re
ent years. They appear in a large variety of appli
ations andmany solution methods were developed so far. The next 
hapter is devotedto the numeri
al stability analysis of 
ertain iterative methods for saddle pointsystems and, before we start, we give a short introdu
tion into this �eld. For anexhaustive overview we refer to the paper by Benzi, Golub and Liesen [14℄.We 
onsider the large sparse system of linear algebrai
 equations in the blo
kform A�xy� � � A BBT �C��xy� = �fg� ; (2.1)where A 2 R

n�n, B 2 R
n�m and C 2 R

m�m. The solution and right-hand sideve
tors are partitioned 
onsistently with respe
t to the partitioning of the systemmatrix. Let A and B are nonzero matri
es and furthermore we assume that theright-hand side is always 
hosen so that the system is 
onsistent.The properties of blo
ks A, B and C may vary depending on the appli
ation. Inthe following se
tion we mention several important examples of problems leadingto a saddle point system. Note that the system (2.1) has a symmetri
 blo
kstru
ture whi
h 
an be relaxed when solving so 
alled generalized saddle pointproblems. However, we do not 
onsider this 
ase here.
1. Applications leading to saddle point problemsSaddle point problems arise in a wide sele
tion of problems of 
omputationals
ien
e and engineering. When A is symmetri
 positive de�nite, B has a full
olumn rank and C = 0, we have the most 
ommon version of the saddle pointsystem � A BBT 0��xy� = �fg� ; (2.2)9



10 CHAPTER 2. SADDLE POINT PROBLEMSwhi
h appears, e.g., when solving ellipti
 se
ond order partial di�erential equa-tions by the mixed �nite element method [24℄ or quadrati
 programming prob-lems with linear 
onstraints [38, 74℄. The 
omponent x of the solution ve
tor(x; y) of (2.2) is the solution of the 
onstrained minimization problemminu2Rn J(u) = 12uTAu� fTu s.t. BTu = g: (2.3)The 
orresponding Lagrangian is de�ned asL(u; v) = J(u) + (BTu� g)T v 8u 2 R
n; 8v 2 R

m;where v is the ve
tor of Lagrange multipliers. The ve
tor (x; y) is the saddlepoint of L, L(x; v) � L(x; y) � L(u; y):The nonsymmetri
 blo
k A appears, e.g., when solving linearized Navier-Stokesequation via the sequen
e of Stokes and Oseen problems. If, in the mixed �niteelements, the approximation spa
es do not ful�ll the LBB 
ondition, the stabi-lization should be applied leading to the nonzero symetri
 positive semide�nitematrix C [24, 32℄.Another important appli
ation of saddle point systems is the solution of linearleast squares problems. Let B be an n �m matrix of a full 
olumn rank and
onsider �nd y s.t. kf �Byk = minv2Rm kf �Bvk:It is well-known [16, 42℄ that the solution of this problem is unique and it is
hara
terized by the orthogonality 
ondition x = f �By ? R(B) = N(BT )? forthe residual ve
tor x (where R(B) and N(BT ) denotes the range and null-spa
eof the matrix B and BT , respe
tively). Hen
e we have x + By = f , BTx = 0leading to the system � I BBT 0��xy� = �f0� :In general, the system of the form (2.2) (with g = 0) 
orresponds to the weightedleast squares problem, where A�1-norm is minimized instead of the Eu
lideanone (when A is symmetri
 positive de�nite).
2. Properties of saddle point matricesHere we brie
y re
all the basi
 properties of saddle point matri
es and relatetheir spe
tral and nonsingularity properties with respe
t to the properties ofparti
ular blo
ks. We restri
t ourselves to the symmetri
 
ase but some results
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an be extended to a more general setting. For a more 
omplete dis
ussion, see[14℄.Theorem 2.1. Let A be a symmetri
 positive de�nite matrix with eigenval-ues 
ontained in the interval [�; �℄ and let B be of a full 
olumn rank withsingular values 
ontained in [�; �℄ with � > 0 and � > 0 and C is symmetri
positive semide�nite. Then� A has n positive and m negative eigenvalues;� if C = 0, the eigenvalues of A are lo
alized as follows:�(A) � I� [ I+;whereI� � �12 ���q�2 + 4�2� ; 12 ���q�2 + 4�2�� ;I+ � ��; 12 ��+q�2 + 4�2�� :Proof. The saddle point matrix A 
an be fa
torized as followsA = � I 0BTA�1 I��A 00 �BTA�1B � C��I A�1B0 I � :The �rst statement immediately follows from the Sylvester's law of inertia [57℄,sin
e the S
hur 
omplement �BTA�1B � C is symmetri
 negative de�nite. Forthe proof of the se
ond statement, see [85℄. �The matrix A is inde�nite, sin
e it has both positive and negative eigenvalues.Solving highly inde�nite matri
es (with n �m) 
an lead to the slow 
onvergen
ewhen using Krylov subspa
e methods like MINRES [79℄, see [34℄. A simplemodi�
ation of the system matrix in the formÂ � � A B�BT C� ;as observed, e.g., in [13, 34℄, leads to a nonsingular system with a spe
trummoved to the right half-plane of the 
omplex plane but, however, for the pri
e oflosing the symmetry.The nonsingularity 
onditions are summarized in the following theorem (see [13℄).Theorem 2.2. Let A be symmetri
 nonnegative real (that is, 12 (A + AT ) ispositive semide�nite), B has a full 
olumn rank and let C be symmetri
positive semide�nite. Then



12 CHAPTER 2. SADDLE POINT PROBLEMS� if A is nonsingular, then N(A) \N(BT ) = 0;� if N( 12 (A+AT )) \N(BT ) = 0, then A is nonsingular.Here 0 represents the null subspa
e of R
n. In parti
ular, if A is symmetri
positive semide�nite, then A is nonsingular if and only if N(A)\N(BT ) = 0.

3. Solution methodsSolution methods for systems of the form (2.1) 
an be divided into two 
ategories
alled 
oupled and segregated methods. Coupled methods solve the system (2.1)as a whole and therefore 
ompute both 
omponents x and y of the solution ve
torat on
e. They 
an be both dire
t, e.g., using LDLT fa
torization with 1� 1 and2 � 2 pivots, and iterative, e.g., using MINRES [79℄ in the symmetri
 
ase. Onthe other hand, segregated methods transform the system (2.1) of the dimensionn+m to a redu
ed system of a smaller dimension solving either for the 
omponentx or y. The remaining 
omponent is then found by the ba
k-substitution into(2.1). The redu
ed systems 
an be also solved either dire
tly or iteratively. They
an be hard to 
ompute expli
itly, so the iterative approa
h is more preferablein many 
ases. Moreover, besides the smaller dimension, the redu
ed systems
an be easier to solve than the whole saddle point system (e.g., the redu
edsystem 
an be positive (semi)de�nite). Sometimes the border between 
oupledand segregated approa
hes is not sharp, sin
e 
oupled methods 
an be treated assegregated and vi
e versa. Here we review two main representatives of segregatedapproa
hes whi
h will be analyzed in the next 
hapter: the S
hur 
omplementredu
tion method and the null-spa
e proje
tion method. We will not dis
ussother issues related to the topi
 and solution methods, espe
ially pre
onditioningof saddle point problems; see [14℄ for more information.
3.1. The Schur complement reduction method. Assume A is symmet-ri
 positive de�nite, B has a full 
olumn rank and C is symmetri
 positive semi-de�nite. Then Theorem 2.2 implies that the system (2.1) has a unique solution.It 
an be regarded as two matrix-ve
tor equations in the formAx+By = f; BTx� Cy = g: (2.4)Sin
e A is nonsingular, we 
an to eliminate x from the �rst equation, i.e., x 
anbe expressed as x = A�1(f �By); (2.5)and substituted into the se
ond equation. Then we obtain the systemSy = BTA�1f � g; S � BTA�1B + C (2.6)



3. SOLUTION METHODS 13with the S
hur 
omplement matrix S (whi
h is, more pre
isely, the negativeS
hur 
omplement of A in A). The solution of an (n+m)-dimensional inde�niteproblem (2.1) is thus transformed to the solution of two systems of ordersm andn with symmetri
 positive de�nite matri
es. First, the system (2.6) is solvedfor y. It is not always preferable to 
ompute S dire
tly, sin
e, even though A issparse, S need not to be. Sometimes the elimination pro
ess 
an be performedsu
h that the sparsity is preserved [71℄. When (2.6) is solved iteratively, we needto 
ompute the produ
t with S whi
h involves the solution of a system withthe matrix A. The iterative method produ
es the sequen
e of approximationsyk (k = 0; 1; 2; : : :) 
onverging ideally to y. When the ve
tor y or an iterateyk is available, the 
orresponding approximation to x 
an be 
omputed by thesubstitution into (2.5).One of the most popular methods for solving saddle point systems based onthe S
hur 
omplement redu
tion is the Uzawa method [7℄. The algorithm is asfollows: 
hoose y0, then for k = 0; 1; 2; : : : do(solve Axk+1 = f �Byk;yk+1 = yk � �(g �BTxk+1 + Cyk):Here � > 0 is a relaxation parameter. Hen
e we 
an write the iteration in theform � A 0BT ���1I��xk+1yk+1� = �0 �B0 ���1I � C��xkyk�+�fg� :The dire
t 
omputation shows that the iteration matrix of the asso
iated sta-tionary method is� A 0BT ���1I��1�0 �B0 ���1I � C� = �0 �A�1B0 I � �S� :Thus the Uzawa method 
onverges if and only if the spe
tral radius of I � �Sis stri
tly less than one. It is easy to see that the Uzawa method is based onthe S
hur 
omplement method, sin
e it is nothing but the Ri
hardson iterationapplied to the S
hur 
omplement system (2.6). On the other hand, the Uzawamethod 
an be regarded as a blo
k Gauss-Seidel method (with a regularizationin the blo
k (2; 2)) applied to the saddle point system (2.1).
3.2. The null-space projection method. The S
hur 
omplement redu
-tion relies on the e�e
tive solution of systems with the matrix A. Sometimes theappli
ation of A�1 is hard to 
ompute in whi
h 
ase the null-spa
e proje
tionmethod 
an be the method of 
hoi
e. Assume here that A is symmetri
 positive



14 CHAPTER 2. SADDLE POINT PROBLEMSde�nite on N(BT ), B has a full 
olumn rank and C = 0. The system (2.2) isthus by Theorem 2.2 uniquely solvable and 
an be expressed as two matrix-ve
torequations Ax+By = f; BTx = g: (2.7)Let x0 be a parti
ular solution of the se
ond equation and Z 2 R
n�(n�m) be amatrix 
ontaining a basis of the null-spa
e of BT . Every su
h solution lies in theaÆne spa
e x0+N(BT ) and hen
e has the form x = x0+ZxZ , where xZ 2 R

n�mare the 
oordinates of x�x0 in the null-spa
e basis Z. Substitution into the �rstequation of (2.4) and premultiplying by ZT gives the symmetri
 positive de�nitesystem ZTAZxZ = ZT (f �Ax0) (2.8)that is, the redu
ed system of the order n � m for the 
omponents of x � x0in the basis of N(BT ). The system ZTAZ 
an be solved dire
tly or iteratively.When we have Z expli
itly available (e.g., by the sparse QR fa
torization) bothapproa
hes 
an be applied. However, when using an iterative method, it 
an beimplemented so that the matrix Z is kept only impli
itly [44℄. We 
an view thesolution of (2.8) as the solution of a proje
ted system(I ��)A(I ��)x1 = (I ��)f; (2.9)where x1 = ZxZ and � is the orthogonal proje
tor onto R(B). The solution
omponent y 
an be then found via the solution of the least squares problemkf �Ax�Byk = minv2Rm kf �Ax�Bvk: (2.10)When (2.8) or (2.9) is solved iteratively produ
ing the sequen
e of approximationsxk (k = 0; 1; 2; : : :), solving (2.10) gives an approximation yk to y with x repla
edby xk.



CHAPTER 3
Limiting accuracy of segregated saddle point

solversWe want to solve a saddle point system whi
h is in fa
t the symmetri
 inde�nitesystem with 2� 2 blo
k stru
ture� A BBT 0��xy� = �f0� ; (3.1)where the diagonal n� n blo
k A is symmetri
 positive de�nite and the n �mo�-diagonal blo
k B has full 
olumn rank. Saddle point problems have re
entlyattra
ted a lot of attention and appear to be a time-
riti
al 
omponent in thesolution of large-s
ale problems in many appli
ations of 
omputational s
ien
eand engineering. A large amount of work has been devoted to a wide sele
tionof solution te
hniques varying from the fully dire
t approa
h, through the use ofiterative stationary or Krylov subspa
e methods, up to the 
ombination of di-re
t and iterative te
hniques in
luding pre
onditioned iterative s
hemes. For anex
ellent survey on appli
ations, methods, and results on numeri
al solution ofsaddle point problems, we refer to [14℄ and numerous referen
es therein (relevantreferen
es will be given later in the text). Signi�
antly less attention, however,has been paid so far to the numeri
al stability aspe
ts. Here we 
on
entrate onthe numeri
al behavior of s
hemes whi
h 
ompute separately the unknown ve
-tors x and y: one of them is �rst obtained from a redu
ed system of a smallerdimension, and, on
e it has been 
omputed, the other unknown is obtained byba
k-substitution solving exa
tly or inexa
tly another redu
ed problem. Themain representatives of su
h a segregated approa
h are the S
hur 
omplementredu
tion method and the null-spa
e proje
tion method. We analyze su
h algo-rithms whi
h 
an be interpreted as iterations for the redu
ed system but 
omputethe approximate solutions xk and yk to both unknown ve
tors x and y simulta-neously. 15



16 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSThe S
hur 
omplement redu
tion method uses the blo
k fa
torization in the form� A BBT 0� = � I 0BTA�1 I��A B0 �BTA�1B� ;where the matrix �BTA�1B is the S
hur 
omplement of A in (3.1). Su
h de-
omposition leads to solving the resulting blo
k triangular system�A B0 �BTA�1B��xy� = � f�BTA�1f� ; (3.2)whi
h is nothing but a blo
k Gaussian elimination applied to the original system(3.1). The blo
k triangular system (3.2) is solved by 
omputing the unknown yfrom the symmetri
 positive de�nite S
hur 
omplement systemBTA�1By = BTA�1f (3.3)of orderm and then by 
omputing the unknown x from a system of order n withthe symmetri
 positive de�nite matrix A. This approa
h leads to the expli
itformula for the unknown ve
tor x = A�1(f � By). The null-spa
e proje
tionmethod is based on the proje
tion of the �rst blo
k equation in (3.1) onto the null-spa
e N(BT ) and onto its orthogonal 
omplement R(B), respe
tively. A

ordingto the se
ond blo
k equation of (3.1) the unknown x belongs to N(BT ) andtherefore we get the blo
k triangular system�(I ��)A(I ��) 0BTA BTB��xy� = �(I ��)fBT f � ; (3.4)where � � B(BTB)�1BT denotes the orthogonal proje
tor onto R(B). Thistriangular system is solved by forward substitution, where we �rst 
ompute theunknown x from the proje
ted system(I ��)A(I ��)x = (I ��)f (3.5)of order n with the symmetri
 positive semi-de�nite matrix (I � �)A(I � �).On
e it has been 
omputed, the unknown y is obtained as y = By(f � Ax) bysolving the least squares problemkf �Ax�Byk = minv2Rm kf �Ax�Bvk; (3.6)where By denotes the Moore{Penrose pseudoinverse of B. The su

ess of algo-rithms for solving the blo
k triangular systems (3.2) or (3.4) depends on theavailability of good approximations to the inverse of the blo
k A or to the



17pseudoinverse of B, respe
tively. More pre
isely, one looks for a 
heap ap-proximate solution to the inner systems with the matrix A and/or to the as-so
iated least squares problems with the matrix B. Numerous inexa
t s
hemeshave been used and analyzed, see, e.g., the analysis of inexa
t Uzawa algorithms[31, 22, 23, 12, 112℄, inexa
t null-spa
e methods [89, 105, 111℄, multilevel ormultigrid methods [21, 20, 111℄, domain de
omposition methods [19℄, two-stageiterative pro
esses [73, 36℄ or inner-outer iterations [43℄. These papers 
ontainmainly the analysis of a 
onvergen
e delay 
aused by the inexa
t solution of innersystems or least squares problems.We 
on
entrate on the question of what is the best a

ura
y we 
an get frominexa
t s
hemes solving either (3.2) or (3.4) when implemented in �nite pre
isionarithmeti
. The fa
t that the inner solution toleran
e strongly in
uen
es thea

ura
y of 
omputed iterates is known and was studied in several 
ontexts. Thegeneral framework for understanding inexa
t Krylov subspa
e methods has beendeveloped in [90℄ and [97℄. Assuming exa
t arithmeti
, Simon
ini and Szyld [90℄and van den Eshof and Sleijpen [97℄ investigated the e�e
t of an approximately
omputed matrix-ve
tor produ
t in every iteration on the ultimate a

ura
y ofseveral solvers and explained the su

ess of relaxation strategies for the innera

ura
y toleran
e from [18, 19, 39℄. The developed theory strongly exploitsthe parti
ular properties of an iterative method used for solving the asso
iatedsystem. In the 
ontext of saddle point problems, this requires a deep analysis ofthe outer iteration s
heme for solving the redu
ed S
hur 
omplement or proje
tedsystem (in parti
ular, we refer to [90, Se
tion 8℄).The e�e
ts of rounding errors in the S
hur 
omplement redu
tion method andthe null-spa
e proje
tion method have been studied, e.g., in [2, 3, 26, 70℄, wherethe maximum attainable a

ura
y of 
omputed approximate solutions by meansof residuals and errors is estimated depending on the user toleran
e spe
i�ed inthe outer iteration. We analyze the in
uen
e of the inexa
t solution of innersystems/least squares problems on the same quantities. Our approa
h is basedon a standard ba
kward analysis whi
h allows us to take into a

ount both theinexa
tness of the inner iteration loops as well as the a

ompanying roundingerrors that o

ur in �nite pre
ision arithmeti
.The theory developed for the outer iteration pro
ess is similar to the analysis ofGreenbaum in [47, 46℄ who estimated the gap between the true and re
ursivelyupdated residual for a general 
lass of iterative methods using 
oupled two-termre
ursions. The di�eren
e here is that every 
omputed approximate solution ofinner problem is interpreted as an exa
t solution of a perturbed problem indu
ed



18 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSby the a
tual stopping 
riterion, while the theory of [47℄ 
onsidered only therounding errors asso
iated with a �xed matrix-ve
tor multipli
ation. In 
ontrastto the theory of inexa
t Krylov methods [90, 97℄, the bounds for the true residualin the outer iteration loop are obtained without spe
ifying the solver used forsolving the S
hur 
omplement or the proje
ted Hessian system. It appears thatthe maximum attainable a

ura
y level in the outer pro
ess is mainly given bythe inexa
tness of solving the inner problems and it is not further magni�ed bythe asso
iated rounding errors. These results are thus similar to ones whi
h 
anbe obtained in exa
t arithmeti
.The situation is di�erent when looking at the numeri
al behavior of residualsasso
iated with the original saddle point system, whi
h des
ribe how a

uratelythe blo
k equations (3.1) are satis�ed. It is shown that the attainable a

u-ra
y of 
omputed approximate solutions then depends signi�
antly on the ba
k-substitution formula used for 
omputing the remaining unknowns. Our resultsshow that, independent of the fa
t that the inner systems are solved inexa
tly,some ba
k-substitution s
hemes lead ultimately to residuals on the roundo� unitlevel. Indeed, our results 
on�rm that depending whi
h ba
k-substitution for-mula is used the 
omputed iterates may satisfy either the �rst or the se
ondblo
k equation to the working a

ura
y. We believe that su
h results 
annotbe obtained using the exa
t arithmeti
 
onsiderations and are of importan
e inappli
ations requiring a

urate approximations (see e.g. [44, 38, 24℄). On theother hand, we agree that in many appli
ations the saddle point system 
omesfrom a dis
retization of 
ertain partial di�erential equations and mu
h lower a
-
ura
y is suÆ
ient. In any 
ase, we give a theoreti
al explanation for the behaviorwhi
h was probably observed or is already impli
itly known. However, we havenot found any expli
it referen
es to this issue. The implementations that wepoint out as optimal are a
tually those whi
h are widely used and suggested inappli
ations.The 
hapter is organized as follows. Se
tions 1 and 2 are devoted to the round-ing error analysis of the S
hur 
omplement redu
tion method and the null-spa
eproje
tion method, respe
tively. Ea
h se
tion is divided into �ve subse
tions.In subse
tions 1.1 and 2.1 we analyze the in
uen
e of inexa
t solution of innersystems or least squares on the maximum attainable a

ura
y in the outer iter-ation pro
ess for solving (3.2) or (3.4), and we estimate the ultimate norms ofthe true residuals �BTA�1f + BTA�1B�yk and (I � �)f � (I � �)A(I � �)�xk.In the 
onsequent three subse
tions of Se
tions 1 and 2, we give bounds for theultimate norm of the true residuals f �A�xk � B�yk and �BT �xk. As we will see



1. SCHUR COMPLEMENT REDUCTION METHOD 19in subse
tions 1.2{1.4 and 2.2{2.4, the limiting a

ura
y of these residuals maysigni�
antly di�er for various ba
k-substitution formulas for 
omputing xk or yk,respe
tively. Subse
tions 1.5 and 2.5 
ontain forward analysis with the boundsfor the errors x� �xk and y� �yk. Throughout this 
hapter our theoreti
al resultsare illustrated on the model example taken from [83℄: we put n = 100; m = 20,and A = tridiag(1; 4; 1) 2 R
n�n; B = rand(n;m); f = rand(n; 1):The spe
trum of A and singular values of B lie in the interval [2:001; 5:999℄ and[2:173; 7:170℄, respe
tively. Therefore the 
onditioning of A or B does not play animportant role in our experiments. For further dis
ussion, we refer to subse
tions1.5 and 2.5.For distin
tion, we denote quantities 
omputed in �nite pre
ision arithmeti
 bybars. We assume that the usual rules of a well-designed 
oating-point arith-meti
 hold, and use o

asionally the notation 
(�) for a 
omputed result of anexpression. The roundo� unit is denoted by u. In parti
ular, for a matrix-ve
tormultipli
ation the bound k
(Ax)�Axk � O(u)kAkkxk is used and kxk denotesthe 2-norm of the ve
tor x; for a general matrix A we make use of the spe
-tral norm kAk and the 
orresponding 
ondition number �(A) = kAk=�min(A),where �min(A) is the minimal singular value of A. For a symmetri
 positivede�nite matrix A, kxkA denotes the A-norm of the ve
tor x. Finally, we applythe O-notation when suitable.

1. Schur complement reduction methodIn this se
tion we will dis
uss algorithms whi
h 
ompute simultaneously approx-imations xk and yk to the unknowns x and y and ideally ful�ll the �rst blo
kequation of (3.1) Axk +Byk = f: (3.7)Our goal here is not to survey all existing s
hemes based on (3.7) but to ana-lyze the numeri
al behavior of three implementations whi
h use di�erent ba
k-substitution formulas for 
omputing the approximate solution xk. More pre
isely,without spe
ifying any parti
ular method, we assume that we have 
omputed theapproximate solution yk+1 and the residual ve
tor r(y)k+1 using the re
ursionsyk+1 = yk + �kp(y)k ; (3.8)r(y)k+1 = r(y)k + �kBTA�1Bp(y)k (3.9)



20 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSwith r(y)0 = �BTA�1(f �By0). We will distinguish between the following threemathemati
ally equivalent formulas:xk+1 = xk + �k(�A�1Bp(y)k ); (3.10)xk+1 = A�1(f �Byk+1); (3.11)xk+1 = xk + A�1(f �Axk �Byk+1): (3.12)The resulting s
hemes are summarized in Figure 3.1. These s
hemes have beenused and studied in the 
ontext of many appli
ations, in
luding various 
las-si
al Uzawa algorithms, two-level pressure 
orre
tion approa
h, or inner-outeriteration method for solving (3.1); see, e.g., the s
hemes with (3.10) in [82, 10℄,(3.11) in [31℄, or (3.12) in [22, 23, 12, 112℄, respe
tively. Be
ause the solves withmatrix A in formulas (3.10){(3.12) are expensive, these systems are in pra
ti
esolved only approximately. Our analysis is based on the assumption that everysolution of a symmetri
 positive de�nite system with the matrix A is repla
ed byan approximate solution produ
ed by an arbitrary method. The resulting ve
toris then interpreted as an exa
t solution of the system with the same right-handside ve
tor but with a perturbed matrix A + �A. We always require that therelative norm of the perturbation is bounded as k�Ak � �kAk, where � repre-sents a ba
kward error asso
iated with the 
omputed solution ve
tor. We willalways assume that the perturbation �A does not ex
eed the limitation given bythe distan
e of A to the nearest singular matrix and put restri
tion in the form��(A) � 1. It follows then from the standard perturbation analysis (see, e.g.,[55, 16℄) that k(A+�A)�1 �A�1k � ��(A)1� ��(A)kA�1k:Note that if � = O(u), then we have a ba
kward stable method for solvingthe positive de�nite system with A. In our numeri
al experiments, we solvethe systems with A inexa
tly using the 
onjugate gradient method or with theCholesky fa
torization as indi
ated by the notation � = O(u).
1.1. The attainable accuracy in the Schur complement system. Inthis subse
tion we look at the ultimate a

ura
y in the outer iteration pro
essby means of the true residual �BTA�1f + BTA�1B�yk. It is 
lear that if weperturb the S
hur 
omplement system �BTA�1By = �BTA�1f to �BT (A +�A)�1Bŷ = �BTA�1f , where k�Ak � �kAk, then the residual asso
iated with
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outer iterationy0; solve Ax0 = f �By0; r(y)0 = �BTx0
for k = 0; 1; 2; : : :yk+1 = yk + �kp(y)k

inner iteration / back-substitutionsolve Ap(x)k = �Bp(y)k
A) xk+1 = xk + �kp(x)k
B) solve Axk+1 = f �Byk+1
C) solve Auk = f �Axk �Byk+1; xk+1 = xk + ukr(y)k+1 = r(y)k � �kBT p(x)kFigure 3.1. S
hur 
omplement redu
tion: Three di�erents
hemes for 
omputing the approximate solution xk+1 (
alledin the text the updated approximate solution (A), the approx-imate solution 
omputed by a dire
t substitution (B), and theapproximate solution 
omputed by a 
orre
ted dire
t substitu-tion (C), respe
tively).ŷ 
an be bounded ask �BTA�1f +BTA�1Bŷk � ��(A)1� ��(A)kA�1kkBk2kŷk: (3.13)We see from (3.13) that there is a limitation to the a

ura
y of the residualobtained dire
tly from ŷ and its bound is proportional to � . Note that these 
on-siderations were made assuming exa
t arithmeti
. The e�e
ts of rounding errorson the same quantity have been studied by Greenbaum [47℄, who 
onsidered ageneral 
lass of methods for solving the �xed system of linear equations using



22 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERStwo-term re
ursions given by (3.8) and (3.9). Using a similar approa
h we 
anextend these results and formulate the following theorem.Theorem 3.1. The gap between the true residual �BTA�1f+BTA�1B�yk andthe updated residual �r(y)k 
an be bounded ask �BTA�1f +BTA�1B�yk � �r(y)k k� [(2k + 1)�+O(u)℄�(A)1� ��(A) kA�1kkBk(kfk+kBk�Yk);where �Yk is de�ned as a maximum norm over all 
omputed approximatesolutions �Yk � maxi=0;:::;k k�yik.Proof. The initial residual �r(y)0 is 
omputed as �r(y)0 = �
(BT �x0), where(A+�A0)�x0 = 
(f �By0), k�A0k � �kAk. It is easy to see that the statementholds for k = 0. The 
omputed approximate solution �yk+1 and the residual �r(y)k+1satisfy �yk+1 = �yk + ��k �p(y)k +�yk+1;k�yk+1k � uk�ykk+ (2u+ u2)k��k �p(y)k k; (3.14)�r(y)k+1 = �r(y)k � ��kBT �p(x)k +�r(y)k+1;k�r(y)k+1k � uk�r(y)k k+O(u)kBkk��k �p(x)k k; (3.15)where �p(x)k is the exa
t solution of the perturbed system(A+�Ak)�p(x)k = �
(B�p(y)k ); k�Akk � �kAk: (3.16)Multiplying (3.14) by BTA�1B, substituting (3.16) into the re
urren
e (3.15),and subtra
ting these two equations we get the re
urren
e�BTA�1f +BTA�1B�yk+1 � �r(y)k+1 = �BTA�1f +BTA�1B�yk � �r(y)k���k(BT �p(x)k +BTA�1B�p(y)k ) +BTA�1B�yk ��r(y)k :The norm of the ve
tor ��k �p(y)k 
an be bounded as k��k �p(y)k k � k�yk+1k + k�ykk +k�yk+1k. This bound in 
ombination with (3.14) gives k�yk+1k � O(u) �Yk+1and k��k �p(y)k k � 3�Yk+1 whi
h also impliesk��k�p(x)k k � 3kA�1k1� ��(A)kBk�Yk+1: (3.17)



1. SCHUR COMPLEMENT REDUCTION METHOD 23Using (3.16), the bound on k��k�p(y)k k, and some elementary manipulation, we 
anestimate the term ��k(BT �p(x)k +BTA�1B�p(y)k )k��k(BT �p(x)k +BTA�1B�p(y)k )k � k��kBT [(A+�Ak)�1 �A�1℄
(B�p(y)k )k+k��kBTA�1[
(B�p(y)k )�B�p(y)k ℄k � [� +O(u)℄�(A)1� ��(A) kA�1kkBk2 �Yk+1:Considering (3.15), (3.17), and the indu
tion assumption on the gap between�BTA�1f +BTA�1B�yk and �r(y)k (similar to the one used in [47℄), we obtain thebound for the error ve
tor �r(y)k+1 in the formk�r(y)k+1k � O(u)�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk+1)whi
h proves the statement of the theorem. �It is a well-known fa
t that the residual �r(y)k 
omputed re
ursively via (3.9) usually
onverges far below O(u). Using this assumption we 
an obtain from the estimatefor the gap �BTA�1f +BTA�1B�yk� �r(y)k the estimate for the maximum attain-able a

ura
y of the true residual �BTA�1f +BTA�1B�yk itself. Summarizing,while the updated residual �r(y)k 
onverges to zero the true residual stagnates atthe level proportional to � . This is also illustrated in our numeri
al example,where the S
hur 
omplement system �BTA�1By = �BTA�1f is solved usingthe steepest des
ent method with the initial approximation y0 set to zero. In Fig-ure 3.2 we show the relative norms of the true residual �BTA�1f +BTA�1B�yk(solid lines) and the updated residual �r(y)k (dashed lines).Similar to Greenbaum [47℄, we have shown that the gap between the true andupdated residual is proportional to the maximum norm of approximate solu-tions 
omputed during the whole iteration pro
ess. Sin
e the S
hur 
omplementsystem is symmetri
 negative de�nite, the norm of the error or residual 
on-verges monotoni
ally for the most iterative methods like the steepest des
ent,the 
onjugate gradient, 
onjugate residual method, or other error/residual min-imizing methods or at least be
omes orders of magnitude smaller than initialerror/residual without ex
eeding this limit. In su
h 
ases, the quantity �Yk doesnot play an important role in the bound, and it 
an usually be repla
ed by ky0k ora small multiple of kyk. The situation is more 
ompli
ated when A is nonsingularand nonsymmetri
; see [60℄.



24 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSAs we already noted, the main di�eren
e with respe
t to the analysis of Green-baum is that the 
oating-point multipli
ation with the �xed A�1 is repla
ed bythe step-dependent inexa
t solution of the system with A su
h that it 
an beinterpreted as the exa
t appli
ation of the matrix (A+�Ak)�1, where the per-turbation matrix �Ak 
hanges at every step k. This 
on
ept is very similar tothe notion of inexa
t Krylov subspa
e methods (see [90℄ or [97℄), whi
h, on theother hand, does not take into a

ount the e�e
ts of rounding errors. The theoryof Greenbaum [47℄ 
ould be dire
tly applied only if we have at ea
h iterationk
(BTA�1Bx)�BTA�1Bxk � O(u)kA�1kkBk2kxk. Sin
e in our idealized 
ase
(BTA�1Bx) = BT (A+�Ak)�1Bx with k�Akk � �kAk, we have onlyk
(BTA�1Bx)�BTA�1Bxk � ��(A)1� ��(A)kA�1kkBk2kxk:This bound 
ould be improved if we make a restri
tion and use a variable toler-an
e for inner systems. If we require that every inner system is solved so thatthe relative residual of its 
omputed solution needs the toleran
e � , then everyinexa
t appli
ation of the matrix BTA�1B would satisfy the inequalityk
(BTA�1Bx)�BTA�1Bxk � �kA�1kkBk2kxk: (3.18)Then the whole outer pro
ess (3.8) and (3.9) together with (3.18) 
ould be in-terpreted as a 
oating-point iteration with the roundo� unit equal to � . The
omputation in this \extended" arithmeti
 would lead tok �BTA�1f +BTA�1B�yk � �r(y)k k � O(� )1� ��(A)kA�1kkBk2(kyk+ �Yk):A thorough rounding analysis of the blo
k LU fa
torization has been given in[26℄ and further developed in the saddle point 
ontext in [70℄. The approa
hwas quite 
onverse to the one used here. It is assumed that all inner systemsare solved in a ba
kward stable way and the a

ura
y of 
omputed approximatesolutions is estimated in terms of the user pres
ribed toleran
e for the outer S
hur
omplement system. Roughly speaking, the higher stopping toleran
e � leads tothe higher attainable a

ura
y of the true residuals f �A�xk �B�yk and �BT �xk.This level is magni�ed by the quantities that play a similar role as the growthfa
tor in the Gaussian elimination with partial pivoting (see, e.g., [55℄). On theother hand, the parameter � giving the threshold for the ba
kward error 
annotbe in�nitely small. Theorem 3.1 a
tually gives its lower bound. Dividing theright-hand side by kA�1kBk2k�yk we end up with � � O(u)�(A)=(1�O(u)�(A)).



1. SCHUR COMPLEMENT REDUCTION METHOD 25In the following we will estimate the residuals f � A�xk � B�yk and �BT �xk. Wewill show that these quantities depend on the a
tual implementation of the ba
k-substitution formula for xk and distinguish between three s
hemes (3.10), (3.11)and (3.12). No matter how we 
ompute the approximations �xk and �yk it holdsthat �BTA�1f +BTA�1B�yk = �BT �xk �BTA�1(f �A�xk �B�yk); (3.19)whi
h gives the relation between the residual �BTA�1f + BTA�1B�yk in theS
hur 
omplement system and the residuals f�A�xk�B�yk and�BT �xk asso
iatedwith the saddle point system (3.1). A

ording to Theorem 3.1, k � BTA�1f +BTA�1B�ykk is ultimately O(� ). Then it is 
lear from (3.19) that both f �A�xk � B�yk and �BT �xk 
annot be proportional to the roundo� unit u. We willshow that, depending on the 
hosen ba
k-substitution s
heme, we 
an ensureeither that f � A�xk � B�yk = O(� ) with �BT �xk = O(u) (s
heme A (3.10)), orthat f � A�xk � B�yk = O(u) with �BT �xk = O(� ) (s
heme C (3.12)), while themost straightforward s
heme B (3.11) leads to both f �A�xk �B�yk = O(� ) and�BT �xk = O(� ).
1.2. Scheme A: The updated approximate solution. In this subse
-tion we analyze the generi
 update (3.10). It is 
lear that this s
heme requiresonly one system solve with A per iteration. Indeed, we 
ompute only the di-re
tion ve
tor p(x)k = �A�1Bp(y)k , whi
h appears in the re
urren
e r(y)k+1 =r(y)k � �kBT p(x)k anyway. As we will see, in �nite pre
ision arithmeti
 this algo-rithm guarantees that �BT �xk will ultimately rea
h O(u). This happens despitethe fa
t that the systems with the matrix blo
k A are 
omputed inexa
tly withthe parameter � frequently mu
h larger than O(u).Theorem 3.2. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(u)(kfk + kBk�Yk) + [(k + 1)� +O(u)℄kAk �Xk: (3.20)The gap between the residuals �BT �xk and �r(y)k 
an be estimated ask �BT �xk � �r(y)k k � O(u)kA�1kkBk(kfk+ kAk �Xk + kBk�Yk);where �Xk is now de�ned as a maximum norm over all 
omputed approximatesolutions �Xk � maxi=0;:::;k k�xik.
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Figure 3.2. S
hur 
omplement redu
tion method: The relativenorms of the true residual�BTA�1f+BTA�1�yk (solid lines) andthe updated residual �r(y)k (dashed lines) { the updated solutions
heme (3.10).Proof. The 
omputed approximate solution �xk+1 satis�es�xk+1 = �xk + ��k �p(x)k +�xk+1;k�xk+1k � uk�xkk+ (2u+ u2)k��k �p(x)k k: (3.21)Substituting re
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hur 
omplement redu
tion method: The normsof the true residual f�A�xk�B�yk { the updated solution s
heme(3.10).we obtain the following bound:kf �A�xk �B�ykk � kf �A�x0 �By0k+ k�1Xi=0 �k��i(A�p(x)i +B�p(y)i )k+ kAkk�xi+1k+ kBkk�yi+1k� :Here we, in fa
t, reformulate the main result of Greenbaum [47, Theorem 2.2℄and heavily use the fa
t that the ve
tors �p(x)k satisfy the perturbed system (3.16).From Theorem 3.1 we have bounds k�yk+1k � O(u) �Yk+1 and k��k �p(y)k k � 3�Yk+1whi
h also imply the bound (3.17). Using all of these results we getk��k(A�p(x)k +B�p(y)k )k � k��k[
(B�p(y)k )�B�p(y)k ℄k+ k�Akkk��k�p(x)k k:



28 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERS

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u), τ = 10−10, τ=10−6, τ=10−2

iteration number k

re
la

tiv
e 

re
si

du
al

 n
or

m
s 

||−
B

T
x k||/

||−
B

T
x 0||,

 ||
r k(y

) ||/
||r

0(y
) ||

Figure 3.4. S
hur 
omplement redu
tion method: The rela-tive norms of the true residual �BT �xk (solid lines) and the re-
ursively 
omputed residual �r(y)k (dashed lines) { the updatedsolution s
heme (3.10).Further we use k�xk+1k � O(u) �Xk+1 and k��k�p(x)k k � 3 �Xk+1. Summarizing, weget the �rst result. The gap between �BT �xk+1 and �r(y)k+1 is equal to�BT �xk+1 � �r(y)k+1 = �BT �xk � �r(y)k �BT�xk+1 ��r(y)k+1and it leads to the expansion 
ontaining just the lo
al errors �xi+1, �yi+1 andthe initial gap �BT �x0 � �r(y)0�BT �xk � �r(y)k = �BT �x0 � �r(y)0 � k�1Xi=0 BT�xi+1 � k�1Xi=0 �r(y)k+1:
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Figure 3.5. S
hur 
omplement redu
tion method: The normsof the true residual f �A�xk�B�yk { the 
orre
ted dire
t substi-tution s
heme (3.12).Taking norms, 
onsidering the bounds on k�xk+1k, k�yk+1k, (3.15), and therelation �r(y)0 = �
(BT �x0), we get the se
ond result. �Corollary 3.3. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A) (kfk+ kBk�Yk):The gap between the residuals �BT �xk and �r(y)k 
an be estimated ask �BT �xk � �r(y)k k � O(u)�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk):
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Figure 3.6. S
hur 
omplement redu
tion method: The rela-tive norms of the true residual �BT �xk (solid lines) and there
ursively 
omputed residual �r(y)k (dashed lines) { the dire
tsubstitution s
heme (3.11).As we will see in the next subse
tion, the bound for the gap �BT �xk � �r(y)k is
onsiderably better than for the s
heme (3.11). In 
ontrast to (3.24), it does notdepend on � . Provided that �r(y)k 
onverges to zero, the true residual �BT �xk willstagnate at the level proportional to u and the se
ond blo
k equation of (3.1)will be satis�ed to working a

ura
y.Figs. 3.3 and 3.4 show the norms of the true residual f � A�xk � B�yk and�BT �xk (solid lines), respe
tively, in
luding the norms of the updated residual�r(y)k (dashed lines). The numeri
al results are in good agreement with Theorem3.2. The residual f � A�xk � B�yk is growing slightly due to the a

umulation of
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Figure 3.7. S
hur 
omplement redu
tion method: The rela-tive error norms kx � �xkkA=kx � �x0kA (solid lines) and ky ��ykkBTA�1B=ky � y0kBTA�1B (dashed lines) { the updated solu-tion s
heme (3.10).errors in inner systems Ap(x)k = �Bp(y)k but it essentially remains on the level pro-portional to � . The residual �BT �xk ultimately stagnates at O(u). The formula(3.10) is suitable whenever the se
ond blo
k equation of (3.1) must be satis�eda

urately, no matter how small or big the inner toleran
e � is.
1.3. Scheme B: The approximate solution computed by a direct

substitution. In this subse
tion we assume that xk is 
omputed by the dire
tsubstitution (3.11). The 
omputed �xk then satis�es the equality(A +�Ak)�xk = 
(f �B�yk); k�Akk � �kAk: (3.22)



32 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSThe perturbation matri
es �Ak are di�erent from those de�ned in Subse
tion1.1, but for simpli
ity we will keep the same notation. In the following we willshow that the residual �r(y)k is a good approximation for the residual �BT �xk,provided that they are above the level given by the bound for �BT �xk � �r(y)k .This quantity is now, however, proportional to � .Theorem 3.4. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(u)(kfk + kBkk�ykk) + �kAkk�xkk: (3.23)The gap between the residuals �BT �xk and �r(y)k 
an be bounded as follows:k �BT �xk � �r(y)k k � O(u)kA�1kkBk(kfk+ kBk�Yk)+ [(k + 3)� +O(u)℄�(A)kBk �Xk ; (3.24)where �Xk is de�ned as �Xk � maxi=0;:::;k�1fk�x0k; k�xkk; k��i�p(x)i kg.Proof. The �rst result follows from (3.22) and the relation for the trueresidual f �A�xk �B�yk = f �B�yk � 
(f �B�yk)��Ak�xk:For the gap between �BT �xk and �r(y)k we have the identity�BT �xk � �r(y)k = �BTA�1f +BTA�1B�yk � �r(y)k +BTA�1�Ak�xk+BTA�1[
(f �B�yk)� (f �B�yk)℄: (3.25)The statement of Theorem 3.1 together with (3.25) gives the se
ond result (3.24).
�Corollary 3.5. The true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A) (kfk+ kBkk�ykk):The gap between the residuals �BT �xk and �r(y)k 
an be bounded as followsk �BT �xk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk): (3.26)Indeed while the residual �r(y)k 
onverges ultimately below O(u), the residual�BT �xk will remain proportional to � . The norm of f � A�xk � B�yk is un
on-ditionally bounded by the term proportional to � dominating other terms in(3.23).



1. SCHUR COMPLEMENT REDUCTION METHOD 33Figure 3.6 shows the norms of �BT �xk (solid lines) and �r(y)k (dashed lines). Theresidual f �A�xk �B�yk behaves similarly to that of the s
heme (3.10) shown inplot 3.3. The residual f �A�xk�B�yk remains almost 
onstant sin
e it is nothingbut the residual of the system Axk = f � Byk solved in ea
h iteration with theuniform a

ura
y.
1.4. Scheme C: The approximate solution computed with a cor-

rected direct substitution. The third ba
k-substitution formula (3.12) 
anbe derived by a 
orre
tion of the s
heme (3.11) and requires two system solveswith A. In this subse
tion we show that its numeri
al behavior is very similarto the behavior of 
lassi
al nonstationary iterative methods des
ribed and ana-lyzed by Higham [55℄. We prove that under 
ertain 
onditions the true residualf � A�xk � B�yk ultimately 
onverges to the level proportional to u, whi
h issigni�
antly smaller than those for the previous two s
hemes.Theorem 3.6. Assuming for suÆ
iently large k with k�yk+1��ykk � O(u) �Yk+1,there exists a step k0 su
h that the true residual f � A�xk � B�yk is boundedby kf �A�xk �B�ykk � O(u)(kfk + kAk �Xk + kBk�Yk) (3.27)for all steps k � k0. The gap between �BT �xk and �r(y)k 
an be estimated asfollows: k �BT �xk � �r(y)k k � O(u)kA�1kkBk(kfk+ kBk�Yk)+ [(k + 3)� + O(u)℄�(A)kBk �Xk:The quantity �Xk is here de�ned as �Xk � maxi=0;:::;k�1fk�x0k; k�xkk; k��i�p(x)i kg.Proof. The 
omputed approximate solution �xk+1 satis�es�xk+1 = �xk + �uk +�xk+1; k�xk+1k � u(k�xkk+ k�ukk); (3.28)where the ve
tor �uk is the exa
t solution of the system(A+�Ak+1)�uk = 
(f �A�xk � B�yk+1); k�Ak+1k � �kAk: (3.29)The residual f �A�xk+1 �B�yk+1 
an be expressed using (3.28) and (3.29) asf �A�xk+1 �B�yk+1 = �Ak+1�uk �A�xk+1+ 
(f �A�xk �B�yk+1)� (f �A�xk �B�yk+1)= Gk+1(f �A�xk �B�yk)�Gk+1B(��k �p(y)k ) + hk+1; (3.30)



34 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSwhere Gk+1 � �Ak+1(A + �Ak+1)�1 and hk+1 � (I + Gk+1)[
(f � A�xk �B�yk+1)� (f �A�xk �B�yk+1)℄� A�xk+1 �Gk+1B�yk+1. From a re
ursive useof the formula (3.30) we obtainf �A�xk �B�yk = Gk � � �G1(f �A�x0 �By0)� k�1Xi=0 Gk � � �Gi+2(Gi+1B ��i�p(y)i � hi+1):Taking norms, using the relation k��i�p(y)i k � k�yi+1� �yik+k�yi+1k and k�Aik ��kAk we obtain the uniform bound kGik � ��(A)[1 � ��(A)℄�1 < 1. This leadsto the inequalitykf �A�xk �B�ykk � � ��(A)1� ��(A)�k kf �A�x0 �By0k+ k�1Xi=0 � ��(A)1� ��(A)�k�i kBkk�yi+1 � �yik+ k maxi=0;:::;k�1 khi+1k+ k maxi=0;:::;k�1 kBkk�yi+1k: (3.31)For the ve
tor hk+1 it further follows thatkhk+1k � O(u)[kfk+ kAk(k�xk+1k+ k�xkk) + kBk�Yk+1℄:It is easy to see that for suÆ
iently large k the �rst term on the right-hand sideof (3.31) will de
rease far below O(u), while the se
ond term will be at mostO(u)kBk�Yk+1 for all steps k starting from some index k0. Summarizing, forsuÆ
iently large k � k0 we have the boundkf � A�xk �B�ykk � O(u)[kfk+ kAk(k�xk+1k+ k�xkk) + kBk�Yk℄:The se
ond statement 
an be proved 
onsidering�BT �xk+1 � �r(y)k+1 = �BTA�1f +BTA�1B�yk+1 � �r(y)k+1�BT [(A+�Ak+1)�1 �A�1℄
(f �A�xk �B�yk+1)�BTA�1[
(f �A�xk �B�yk+1)� (f �A�xk �B�yk+1)℄:The �rst term on the right-hand side 
an be estimated using Theorem 3.1. Basedon (3.29) we havek[(A+�Ak+1)�1 �A�1℄
(f �A�xk �B�yk+1)k � ��(A)1� ��(A)k�ukkwhi
h together with the bound on k�ukk 
ompletes the proof. �



1. SCHUR COMPLEMENT REDUCTION METHOD 35Corollary 3.7. Assuming for suÆ
iently large k with k�yk+1��ykk � O(u) �Yk+1,there exists a step k0 su
h that the true residual f � A�xk � B�yk is boundedby kf �A�xk �B�ykk � O(u)�(A)1� ��(A) (kfk+ kBk�Y (k0)k )for all steps k � k0. The quantity �Y (k0)k is de�ned as �Y (k0)k � maxi=k0;:::;k k�yik.The gap between �BT �xk and �r(y)k 
an be estimated as followsk �BT �xk � �r(y)k k � O(u)�(A)1� ��(A)kA�1kkBk(kfk+ kBk�Yk):In Theorem 3.6, we assume that �yk ultimately stagnate so that k�yk+1 � �ykk �O(u) �Yk+1 for suÆ
iently large k � k0. It appears that this 
ondition does notrepresent a serious restri
tion. Using (3.14) we have k�yk+1 � �ykk � k��k�p(y)k k +O(u) �Yk+1. We will show that the norm of ��k �p(y)k is mu
h smaller than u forlarge k, i.e., we 
an absorb it into the term O(u) �Yk+1. Denoting Ŝk � BT (A +�Ak)�1B, using (3.15) and (3.16) we have the boundk��k �p(y)k k � 2kŜ�1k k(k�r(y)k+1k+ k�r(y)k k) +O(u)kŜ�1k kk(A+�Ak)�1kkBk2k��k�p(y)k k:Provided that O(u)kŜ�1k kk(A+�Ak)�1kkBk2 < 1, we obtaink��k�p(y)k k � 2kŜ�1k k(k�r(y)k+1k+ k�r(y)k k)1�O(u)kŜ�1k kk(A+�Ak)�1kkBk2 :Sin
e the norms of updated residuals de
rease far below the roundo� unit, theassumption on k�yk+1 � �ykk will be true for suÆ
iently large k. Note thatO(u)kŜ�1k kk(A + �Ak)�1kkBk2 < 1 is nothing but the restri
ted assumptionof numeri
al nonsingularity of the S
hur 
omplement matrix BTA�1B.The bound (3.27) is signi�
antly better than its 
ounterparts (3.20) and (3.23).Theorem 3.6 des
ribes that the residual f � A�xk � B�yk will ultimately rea
hthe roundo� unit level provided that the matrix GkGk�1 � � �G1 
onverges to zerofor k ! 1. As soon as iterates �yk start to stagnate at their limiting a

ura
ylevel, the rate of 
onvergen
e of this nonstationary iteration pro
ess is boundedby the fa
tor ��(A)[1 � ��(A)℄�1. The behavior of �BT �xk is similar to that ofs
heme (3.11). Indeed, when �r(y)k 
onverges ultimately below O(u), the residual�BT �xk remains proportional to � . Figure 3.5 shows the norms of the residualf � A�xk � B�yk. The plot for �BT �xk (not reported) is similar to the plot (d)for the s
heme (3.11). It is 
lear that in our well-
onditioned 
ase the stationary



36 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSmethod 
onverges very fast and the rate of de
rease of f�A�xk�B�yk is essentially
omparable to the 
onvergen
e rate of the outer iteration.
1.5. Forward error analysis. In this subse
tion we estimate the maximumattainable a

ura
y in terms of the errors x� �xk and y � �yk. First we formulatethe bounds in the 2-norm, then in the A-norm of the error x� �xk, and then inthe BTA�1B-norm of the error y � �yk. The errors x � �xk and y � �yk, and theresiduals f �A�xk �B�yk and �BT �xk satisfy� A BBT 0��x� �xky � �yk� = �f �A�xk �B�yk�BT �xk � : (3.32)We have the expli
it expression for the inverse of the saddle point matrix� A BBT 0��1 = � (I ��)A�1 ��B(BTB)�1�(BTB)�1BT�T �(BTA�1B)�1� ;where � � A�1B(BTA�1B)�1BT represents the oblique proje
tor onto R(B)along N(BT ). Considering (3.32), the inequalitiesk(I ��)A�1k = kA�1=2(I �A�1=2B(BTA�1B)�1BTA�1=2)A�1=2k � ��1min(A)andk�BT (BTB)�1k = kA�1=2(A�1=2B(BTA�1B)�1A�1=2)A1=2B(BTB)�1k� �1=2(A)��1min(B);(note that A�1=2B(BTA�1B)BTA�1=2 is the orthogonal proje
tor onto the rangeof R(A�1=2B), we obtain the boundskx� �xkk � 
1kf �A�xk �B�ykk+ 
2k �BT �xkk; (3.33)ky � �ykk � 
2kf �A�xk �B�ykk+ 
3k �BT �xkk; (3.34)where 
1 � ��1min(A), 
2 � �1=2(A)��1min(B), and 
3 � ��1min(BTA�1B) are 
on-stants independent of the iteration step k. It is 
lear from (3.33), (3.34), andTheorems 3.2, 3.4 and 3.6 that kx� �xkk and ky � �ykk will be O(� ) for all ba
k-substitution s
hemes. In 
ontrast to our numeri
al example, the saddle pointsystems that arise in pra
ti
e 
an be ill-
onditioned. In su
h 
ases the 
onstants
1, 
2, and 
3 may play an important role.In exa
t arithmeti
 we have kx�xkkA = ky�ykkBTA�1B . Sin
e in �nite pre
isionarithmeti
 the residual f �A�xk �B�yk is no longer zero, instead of this identitywe get jkx� �xkkA � ky � �ykkBTA�1B j � 
1=21 kf �A�xk �B�ykk: (3.35)



1. SCHUR COMPLEMENT REDUCTION METHOD 37We 
an also formulate the proposition, whi
h gives bounds for the errors in termsof the residuals f �A�xk �B�yk and �BTA�1f +BTA�1B�yk.Theorem 3.8. The A-norm of the error x � �xk and the BTA�1B-norm ofthe error y � �yk 
an be bounded askx� �xkkA � 
1=21 kf �A�xk �B�ykk+ 
1=23 k �BTA�1f +BTA�1B�ykk; (3.36)ky � �ykkBTA�1B � 
1=23 k �BTA�1f +BTA�1B�ykk: (3.37)Proof. It follows from (3.35) thatkx� �xkkA � ky � �ykkBTA�1B + jkx� �xkkA � ky � �ykkBTA�1B j� ky � �ykkBTA�1B + ��1=2min (A)kf �A�xk �B�ykk: (3.38)For the BTA�1B-norm of the error y � �yk we haveky � �ykkBTA�1B = kBTA�1f �BTA�1B�ykk(BTA�1B)�1 ; (3.39)whi
h 
ompletes the proof. �The �rst term on the right-hand side of (3.36) should be zero in exa
t arithmeti
and it des
ribes how well the 
omputed �xk and �yk satisfy (3.7). The se
ond termis related to the S
hur 
omplement residual whi
h in exa
t arithmeti
 should
onverge to zero. The re
ursively 
omputed residual �r(y)k is a good approximationto �BTA�1f +BTA�1B�yk, provided they are above the level given by Theorem3.1. Therefore its norm represents an easily 
omputable quantity for the se
ondterm on the right-hand side of (3.36). The residual f � A�xk � B�yk depends onthe 
omputed �xk and we distinguish between three s
hemes with (3.10), (3.11)or (3.12), respe
tively. We 
an see that, no matter whi
h implementation we use,�BTA�1f+BTA�1B�yk is a dominating quantity in (3.36). Therefore, kx��xkkA
an be thus well approximated during the 
onvergen
e by the quantity 
1=23 k�r(y)k kor its estimate. Similar 
an be said also for ky � �ykkBTA�1B , see (3.37).The errors x� �xk and y� �yk 
an be estimated with more sophisti
ated but easily
omputable bounds (without expli
it use of residuals and 
onditioning). As anexample we refer to the rounding error analysis of the 
onjugate gradient methodand various mathemati
ally equivalent formulas for estimating kx� �xkkA [96℄. Itappears that although many existing bounds were developed using exa
t arith-meti
 
onsiderations, they estimate su

essfully the energy error using 
omputedquantities whi
h 
an be orders of magnitude di�erent from their exa
t pre
ision
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ounterparts. Therefore despite that we assume that A�1 is performed inexa
tly,it is feasible to estimate the BTA�1B-norm of the error y � �yk.In Figure 3.7 we report the relative error norms kx� �xkkA=kx� �x0kA and ky ��ykkBTA�1B=ky � y0kBTA�1B . The inverse of A in the 
omputation of BTA�1B-norm is 
omputed by a dire
t solver. In agreement with (3.36) and (3.37) andTheorems 3.2, 3.4 and 3.6 (see also Figures 3.3-3.6), the relative A-norm of theerror x � �xk and also the relative BTA�1B-norm of the error y � �yk begin tostagnate at the level proportional to � . Sin
e the behavior of these quantities forall implementations is similar, we present only the results for the s
heme (3.11).The slight di�eren
e is visible only in the gap between both error norms givenby the estimate (3.35).
2. Null-space projection methodIn this se
tion we deal with algorithms whi
h 
ompute approximations xk andyk su
h that xk satis�es BTxk = 0 and yk solves the least squares problemminimizing the residual f �Axk �Byk, i.e.,kf �Axk �Bykk = minv2Rm kf �Axk �Bvk: (3.40)We will denote (3.40) by Byk � f � Axk and assume that the approximatesolution xk+1 and the residual ve
tor r(x)k+1 are 
omputed usingxk+1 = xk + �kp(x)k ; (3.41)r(x)k+1 = r(x)k � �kAp(x)k �Bp(y)k ; (3.42)where r(x)0 = By(f � Ax0). The ve
tors x0 and p(x)k belong to N(BT ) and p(y)ksolves the problem Bp(y)k � r(x)k � �kAp(x)k minimizing the residualkr(x)k � �kAp(x)k �Bp(y)k k = minp2Rm kr(x)k � �kAp(x)k �Bpk:This residual update strategy was proposed in [44℄ (see also [21, 20℄) and isused to redu
e the roundo� errors in the proje
tion onto N(BT ). Note thatthe ve
tors p(y)k 
an be, with no additional 
ost, used as dire
tion ve
tors for
omputing the approximate solution yk+1. Again we will distinguish between
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outer iterationx0; solve By0 � f �Ax0; r(x)0 = f �Ax0 �By0
for k = 0; 1; 2; : : :xk+1 = xk + �kp(x)k

inner iteration / back-substitutionsolve Bp(y)k � r(x)k � �kAp(x)k
A) yk+1 = yk + p(y)k
B) solve Byk+1 � f �Axk+1
C) solve Bqk � f �Axk+1 �Byk; yk+1 = yk + qkr(x)k+1 = r(x)k � �kAp(x)k �Bp(y)kFigure 3.8. Null-spa
e proje
tion method: Three di�erents
hemes for 
omputing the approximate solution yk+1 (
alled inthe text the updated approximate solution (A), the approximatesolution 
omputed by a dire
t substitution (B), the approximatesolution 
omputed by a 
orre
ted dire
t substitution (C), re-spe
tively).three ba
k-substitution formulas (the s
hemes are des
ribed in Figure 3.8)yk+1 = yk + p(y)k ; p(y)k = By(r(x)k � �kAp(x)k ); (3.43)yk+1 = By(f � Axk+1); (3.44)yk+1 = yk +By(f � Axk+1 �Byk): (3.45)The pseudoinverseBy in (3.43){(3.45) is applied by solving the least squares withthe matrix B. These problems are solved inexa
tly. In our 
onsiderations we will



40 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSassume that the 
omputed solution �v of the least squares problem Bv � 
 is anexa
t solution of a perturbed problem (B+�B)�v � 
+�
 with k�Bk=kBk � �and k�
k=k
k � � . The parameter � again represents the measure for inexa
tsolution of the least squares with B and a
tually des
ribes the ba
kward error.This 
an be a
hieved in many di�erent ways 
onsidering the inner iteration loopsolving the asso
iated system of normal equations, the augmented system formu-lation, or solving it dire
tly. Similar inexa
t s
hemes have been 
onsidered forsolving quadrati
 programming problems [2, 3℄, multigrid methods [20, 21℄ or
onstraint pre
onditioners [63, 83, 89℄. We assume ��(B) � 1 whi
h guaran-tees B+�B to have a full 
olumn rank. This allows the use of the perturbationtheory (see [104℄ or [55, Lemma 19.8℄), in parti
ular the inequalitiesk(B +�B)yk � kByk1� ��(B) ; kBBy �B(B +�B)yk � 2��(B)1� ��(B) :Note that if � = O(u), then we have a ba
kward stable method for solvingthe least squares problem with B. In our experiments we applied the CGLSmethod [16℄ with the stopping 
riterion based on the 
orresponding ba
kwarderror. Notation � = O(u) stands for the Householder QR fa
torization.
2.1. The attainable accuracy in the projected system. In this sub-se
tion we look at the a

ura
y in the outer iteration for solving the proje
tedsystem (I ��)A(I ��)x = (I ��)f . We 
an 
onsider the perturbed system(I � �̂)A(I � �̂)x̂ = (I � �̂)f; (3.46)where �̂ = (B+�B)(B+�B)y su
h that k�Bk � �kBk. The residual asso
iatedwith the solution of (3.46) 
an be written as(I��)f � (I��)A(I��)x̂ = (�̂��)f +(I� �̂)A(�� �̂)x̂+(�� �̂)A(I��)x̂and due to k�̂��k � k�BkminfkByk; k(B+�B)ykg [55, Lemma 19.8℄ we havek(I ��)f � (I ��)A(I ��)x̂k � 2��(B)1� ��(B) (kfk+ kAkkx̂k):Indeed, even if we assume exa
t arithmeti
, the residual obtained dire
tly from x̂is proportional to the parameter � . In addition, we ideally have (B+�B)T x̂ = 0whi
h implies k � BT x̂k � �kBkkx̂k. Therefore we 
an expe
t that also theresidual �BT �xk asso
iated with the 
omputed approximate solution �xk will beproportional to � . Su
h analysis is dependent on the 
hoi
e of a parti
ular methodwith the re
urren
es (3.41) and (3.42), and therefore we do not give it here. In
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ordan
e with [47℄ it seems reasonable that the bound for �BT �xk is propor-tional to the fa
tor �Xk. Moreover, the error in the proje
tion of an arbitraryve
tor is represented in the bounds by ��(B)=[1 � ��(B)℄. Therefore �BT �xkand ��xk 
an be expe
ted to have the formk �BT �xkk � O(� )kBk1� ��(B) �Xk; k��xkk � O(� )�(B)1� ��(B) �Xk: (3.47)Theorem 3.9 shows that the true residual (I � �)f � (I � �)A(I � �)�xk isultimately proportional to � , while its proje
tion onto N(BT ) will �nally rea
hthe level O(u) provided that the updated residual �r(x)k 
onverges far below thatlevel.Theorem 3.9. The gap between the true residual (I��)f�(I��)A(I��)�xkand the proje
tion of the updated residual (I ��)�r(x)k 
an be bounded byk(I ��)f � (I ��)A(I ��)�xk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk+ kAk �Xk);where �Xk � maxi=0;:::;k k�xik.Proof. The 
omputed approximation �xk+1 satis�es the relations�xk+1 = �xk + ��k �p(x)k +�xk+1; k�xk+1k � uk�xkk+ (2u+ u2)k��k �p(x)k k: (3.48)The inequality k��k �p(x)k k � k�xk+1k + k�xkk + k�xk+1k gives k��k �p(x)k k � 3 �Xk+1and k�xk+1k � O(u) �Xk+1. The ve
tors �y0 and �p(y)k satisfy (B + �B0)�y0 �
(f �Ax0) + �
0 with k�B0k � �kBk, k�
0k � �k
(f �Ax0)k and(B +�Bk)�p(y)k � 
(�r(x)k � ��kA�p(x)k ) + �
k; (3.49)k�Bkk � �kBk; k�
kk � �k
(�r(x)k � ��kA�p(x)k )k: (3.50)For updated residuals we have �r(x)0 = 
(f �Ax0 �B�y0) and�r(x)k+1 = �r(x)k � ��kA�p(x)k �B�p(y)k +�r(x)k+1; (3.51)k�r(x)k+1k � O(u)(k�r(x)k k+ kAkk��k�p(x)k k+ kBkk�p(y)k k): (3.52)
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ursive use of (3.48) and (3.51) leads to the expression for the gap betweenthe proje
tions of f �A�xk and �r(x)k(I ��)(f �A�xk � �r(x)k ) = (I ��)(f �A�x0 � �r(x)0 )� k�1Xi=0(I ��)(A�xi+1 +�r(x)i+1):Taking norms and 
orresponding bounds we get, after some manipulation, thefollowing:k(I ��)(f �A�xk � �r(x)k )k � O(u)�(B)1� ��(B) �kfk+ kAk �Xk� : (3.53)Here we have used that k�r(x)k k � k�r(x)0 k for k = 0; 1; : : : whi
h seems reasonablewhen solving the positive semi-de�nite problem. For the gap between (I��)f�(I ��)A(I ��)�xk and (I ��)�r(x)k , we 
an writek(I ��)f � (I ��)A(I ��)�xk � (I ��)�r(x)k k � k(I ��)(f �A�xk � �r(x)k )k+ k(I ��)A��xkk:Considering (3.53) and (3.47) we 
an 
on
lude the proof. �In Figure 3.9 we report the relative norms of the true residual (I � �)f � (I ��)A(I � �)�xk (solid lines) and the updated residual �r(x)k (dashed lines). Thenumeri
al results 
on�rm that the residual f�A�xk is withinN(BT ) approximatedby �r(x)k to the working pre
ision u. However, this is not true for the residual(I��)f�(I��)A(I��)�xk whi
h is ultimately O(� ) as it follows from Theorem3.9. The residual �BT �xk obviously does not depend on the ba
k-substitutions
heme; see Figure 3.10.In 
ontrast to the S
hur 
omplement redu
tion method, the inexa
tness is 
on-ne
ted with the matrix B instead of A. In pra
ti
e, the sequential appli
ationof the matrix (I � �)A(I � �) does not represent a symmetri
 operator. Thisis also re
e
ted in the fa
t that we assume a general framework for 
omput-ing the ve
tor xk and analyze another proje
tion of residuals f � A�xk � B�ykand �r(x)k . Ideally at every iteration step we apply the matrix-ve
tor produ
twith the matrix (I � �̂)A(I � �̂), where �̂ represents the orthogonal proje
tor�̂ = (B+�B)(B+�B)y with k�Bk � �kBk. A question similar to one in sub-se
tion 1.1 arises whether we 
an apply the results of [47℄ dire
tly to the system
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Figure 3.9. Null-spa
e proje
tion method: the relative normsof the true residual (I��)f�(I��)A(I��)�xk of the proje
tedsystem (solid lines) and the updated residual �r(x)k (dashed lines){ the updated solution s
heme (3.43).(I � �̂)A(I � �̂)x̂ = (I � �̂)f . Theorem 3.9 shows that in �nite pre
ision arith-meti
 the residual (I ��)f � (I ��)A(I ��)�xk will remain proportional to theparameter � . The theory of Greenbaum 
an be dire
tly applied only if the multi-pli
ation by (I��)A(I��) satis�es k
[(I��)A(I��)x℄� (I��)A(I��)xk �O(u)k(I ��)A(I ��)kkxk whi
h is obviously not the 
ase here. In the idealized
ase we have 
[(I ��)A(I ��)x℄ = (I � �̂)A(I � �̂)x and hen
ek
[(I ��)A(I ��)x℄� (I ��)A(I ��)xk � O(� )�(B)1� ��(B)kAkkxk:If we 
ould improve this bound to satisfy k
[(I � �)A(I � �)x℄� (I ��)A(I ��)xk � �kAkkxk, the outer iteration pro
ess 
ould be viewed as an iteration in�nite pre
ision arithmeti
 with the roundo� unit equal to � and the theory of
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Figure 3.10. Null-spa
e proje
tion method: The norms of theresidual �BT �xk { the updated solution s
heme (3.43).Greenbaum would lead to the estimatek(I ��)f � (I ��)A(I ��)�xk � �r(x)k k � O(� )1� ��(B)kAk(kxk+ �Xk):The numeri
al behavior of the null-spa
e proje
tion method was studied also in[2, 3℄, where the inner least squares are solved by the QR or LU fa
torization with� = O(u) and the proje
ted system is solved inexa
tly with the parameter �. OurTheorem 3.9 thus gives an answer to the question of how small 
an the parameter� be in the outer iteration. Roughly speaking, when using the error or residualminimizing method for solving the proje
ted Hessian system the ba
kward errorasso
iated with the iterate �xk 
annot be smaller than O(u)�(B)=[1�O(u)�(B)℄.It is 
lear that no matter how we 
ompute �xk and �yk we have the followingrelation between (I ��)f � (I ��)A(I ��)�xk, f �A�xk �B�yk and �BT �xk:(I ��)f � (I��)A(I ��)�xk = (I��)(f �A�xk�B�yk)+ (I ��)A��xk: (3.54)



2. NULL-SPACE PROJECTION METHOD 45

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u), τ = 10−10, τ=10−6, τ=10−2

iteration number

re
la

tiv
e 

re
si

du
al

 n
or

m
s 

||f
−

A
x k−

B
y k||/

||f
−

A
x 0−

B
y 0||,

 ||
r(x

)
k

||/
||r

(x
)

0
||

Figure 3.11. Null-spa
e proje
tion method: The relativenorms of the true residual f�A�xk�B�yk and the updated resid-ual �r(x)k (for the updated solution s
heme (3.43)).Owing to (3.47), ��xk (and thus also �BT �xk) is O(� ). From Theorem 3.9 we havethat k(I��)f�(I��)A(I��)�xkk is ultimately O(� ). Sin
e (I��)(f�A�xk) =(I � �)(f � A�xk � B�yk) for any �yk it also follows from Theorem 3.9 that theproje
tion of f � A�xk � B�yk onto N(BT ) will ultimately rea
h O(u). It is not
lear from (3.54) whether the whole residual f � A�xk � B�yk will be ultimatelyO(� ) or O(u). It strongly depends on the ba
k-substitution s
heme used for
omputing the approximate solutions yk+1. The following subse
tions show thatthe residual f � A�xk � B�yk for the s
hemes with (3.43) (s
heme A) and with(3.45) (s
heme C) will �nally rea
h O(u), while the s
heme B using (3.44) leadsto the a

ura
y that is proportional only to � .
2.2. Scheme A: The updated approximate solution. In this subse
-tion we analyze the generi
 s
heme with the update (3.43). This implementation
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Figure 3.12. Null-spa
e proje
tion method: The relativenorms of the true residual f�A�xk�B�yk and the updated resid-ual �r(x)k (for the dire
t substitution s
heme (3.44)).does not require any additional solution of a least squares problem with the ma-trix B. Indeed, the 
omputed dire
tion ve
tor p(y)k is used to update both theiterate yk and the residual �r(x)k . As we will see, this algorithm 
omputes theresidual f � A�xk � B�yk whi
h will ultimately rea
h the level of roundo� unitu independently on the fa
t that the inner least squares are solved with thea

ura
y determined by the parameter � .Theorem 3.10. The gap between the residuals f � A�xk � B�yk and �r(x)k 
anbe bounded as follows:kf �A�xk �B�yk � �r(x)k k � O(u)(kfk + kAk �Xk + kBk�Yk);where �Yk � maxi=0;:::;k k�yik. The statement of the theorem remains true ifwe repla
e �Yk by maxfky0k; kp(y)i k; i = 0; 1; : : : ; k � 1g.
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Figure 3.13. Null-spa
e proje
tion method: The relativenorms of the true residual f�A�xk�B�yk and the updated resid-ual �r(x)k (for the 
orre
ted dire
t substitution s
heme (3.45)).Proof. The ve
tor �xk+1 satis�es (3.48) with k�xk+1k � O(u) �Xk+1 andsimilarly for �yk+1 we have�yk+1 = �yk + �p(y)k +�yk+1; k�yk+1k � uk�ykk+ (2u+ u2)k�p(y)k kwith k�yk+1k � O(u) �Yk+1. The residual �r(x)k+1 satis�es (3.51) and thus k�r(x)k+1k �O(u)(k�r(x)k k + kAk �Xk+1 + kBk�Yk+1). Using the above relations we obtain there
ursive formulaf �A�xk+1�B�yk+1� �r(x)k+1 = f �A�xk�B�yk� �r(x)k �A�xk+1�B�yk+1��r(x)k+1:Taking the norms we get, after some manipulation, the following:kf �A�xk �B�yk � �r(x)k k � O(u) kfk+ kAk �Xk + kBk�Yk + k�1Xi=0 k�r(x)i k! :
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Figure 3.14. Null-spa
e proje
tion method: the relative normsof the errors kx � �xkkA=kx � x0kA (solid lines) and ky ��ykkBTA�1B=ky � �y0kBTA�1B (dashed lines) { the update solu-tion s
heme (3.43).The statement 
an now be proved by indu
tion on k. �Corollary 3.11. The gap between the residuals f �A�xk �B�yk and �r(x)k 
anbe bounded as follows:kf �A�xk �B�yk � �r(x)k k � O(u)�(B)1� ��(B) (kfk+ kAk �Xk):We have shown that �r(x)k is a good approximation to f�A�xk�B�yk independentlyof the fa
t that �p(y)k are 
omputed inexa
tly. Note that Theorem 3.9 
an bederived using Theorem 3.10 due to k(I � �)(f � A�xk � �r(x)k )k = k(I � �)(f �A�xk�B�yk� �r(x)k )k � kf�A�xk�B�yk� �r(x)k k. In Figure 3.11 we show the relative



2. NULL-SPACE PROJECTION METHOD 49norms of f �A�xk �B�yk (solid lines) and �r(x)k (dashed lines). The results of ournumeri
al experiment are in a good agreement with Theorem 3.10.
2.3. Scheme B: The approximate solution computed by a direct

substitution. In this subse
tion we analyze the s
heme (3.44), whi
h uses thedire
tly 
omputed right-hand side ve
tor f � Axk. The 
omputed �yk is then asolution of the perturbed problem(B +�Bk)�yk � 
(f �A�xk) + �
k (3.55)with k�Bkk � �kBk and k�
kk � �k
(f�A�xk)k. We will show that (I��)�r(x)kis a good approximation of f � A�xk � B�yk provided that both are above theirlevel of maximum attainable a

ura
y.Theorem 3.12. The gap between the residuals f �A�xk�B�yk and (I ��)�r(x)k
an be bounded bykf �A�xk �B�yk � (I ��)�r(x)k k � 5��(B)1� ��(B) (kfk+ kAkk�xkk)+O(u)(kfk + kAk �Xk + kBk�Yk):Proof. Considering (3.55) it follows for the true residual thatf �A�xk �B�yk = f �A�xk �B(B +�Bk)y[
(f �A�xk) + �
k℄= (I ��)(f �A�xk) +B[By � (B +�Bk)y℄
(f �A�xk)+BBy[
(f � A�xk)� (f �A�xk)℄�B(B +�Bk)y�
k:Taking (3.55), the bounds on B[By� (B+�Bk)y℄, (B+�Bk)y and Theorem 3.9we get the desired result. �Corollary 3.13. The gap between the residuals f�A�xk�B�yk and (I��)�r(x)k
an be bounded bykf �A�xk �B�yk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk+ kAkk�xkk)+ O(u)�(B)1� ��(B) (kfk+ kAk �Xk):When using the formula (3.44) the residual f�A�xk�B�yk will not de
rease belowa level proportional to � , while (I��)�r(x)k 
onverges beyond the level O(u). Thisresult is illustrated by our numeri
al experiment. In Figure 3.12 we plotted therelative norms of f �A�xk �B�yk (solid lines) and �r(x)k (dashed lines).
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2.4. Scheme C: The approximate solution computed with a cor-

rected direct substitution. In this subse
tion we analyze the s
heme (3.45)requiring a solution of two least squares problems with B. We show that itsbehavior is similar to the algorithm using the update (3.43). We prove that un-der 
ertain assumptions the true residual f � A�xk � B�yk 
onverges ultimatelyto the O(u) level. The di�eren
e is that while Theorem 3.10 holds without anyadditional 
onditions, here we have a situation analogous to the behavior of non-stationary iterative methods (see [55, Chapter 16℄).Theorem 3.14. Provided that for suÆ
iently large step k the 
omputed ve
-tor �xk stagnates, i.e., we have k�xk+1 � �xkk � O(u) �Xk+1, there exists someiteration step k0 su
h thatkf �A�xk �B�yk � (I ��)�r(x)k k � O(u)(kfk+ kAk �Xk + kBk�Yk)holds for all k � k0.Proof. The ve
tor �yk+1 satis�es �yk+1 = �yk + �q(y)k +�yk+1 and k�yk+1k �O(u) �Yk+1, where �q(y)k is the solution of the problem (B + �Bk)�q(y)k � 
(f �A�xk+1�B�yk)+�
k with k�Bkk � �kBk and k�
kk � �k
(f �A�xk+1�B�yk)k.For f �A�xk+1 �B�yk+1 we 
an then writef �A�xk+1 �B�yk+1 = (I ��)(f �A�xk+1) +Gk(f �A�xk+1 �B�yk)�B(B +�Bk)y�
k + hk;where Gk = B[By� (B+�Bk)y℄ and hk = �B(B+�Bk)y[
(f�A�xk+1�B�yk)�(f � A�xk+1 � B�yk)℄ � B�yk+1. Proje
ting f � A�xk+1 � B�yk+1 onto R(B) andtaking norms, we obtaink�(f �A�xk+1 �B�yk+1)k � �kGkk+ �kB(B +�Bk)yk� kf �A�xk+1 �B�ykk+�kB(B +�Bk)ykk
(f �A�xk+1 �B�yk)� (f �A�xk+1 �B�yk)k+ khkk:The term kf �A�xk+1 �B�ykk 
an be further bounded bykf �A�xk+1 �B�ykk � k(I ��)(f �A�xk+1)k+ k�(f �A�xk �B�yk)k+ kA(�xk+1 � �xk)k
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h together with the bound on kGkk, khkk � O(u)(kfk+kAk �Xk+1+kBk�Yk+1),and �kB(B +�Bk)yk � ��(B)[1� ��(B)℄�1 < 1 leads tok�(f �A�xk+1 �B�yk+1)k � 3��(B)1� ��(B) [k�(f �A�xk �B�yk)k+k(I ��)(f �A�xk+1)k+ kAkk�xk+1 � �xkk℄+O(u)(kfk+ kAk �Xk+1 + kBk�Yk+1):After the re
ursive use of the previous inequality we obtaink�(f �A�xk �B�yk)k � � 3��(B)1� ��(B)�k kf �A�x0 �B�y0k+ k�1Xi=0 � 3��(B)1� ��(B)�k�i [k(I ��)(f �A�xi+1)k+ kAkk�xi+1 � �xik℄+O(u)(kfk + kAk �Xk + kBk�Yk): (3.56)Under the assumption on the stagnation of iterates there exist some index k0 su
hthat the se
ond term on the right-hand side of (3.56) will be of order O(u)(kfk+kAk �Xk + kBk�Yk) for all iteration steps k � k0. Finally, from Theorem 3.10 wehave k(I ��)(f �A�xk)� (I ��)�r(x)k k � O(u)(kfk + kAk �Xk + kBk�Yk). �Corollary 3.15. Provided that for suÆ
iently large step k the 
omputedve
tor �xk stagnates, i.e., we have k�xk+1� �xkk � O(u) �Xk+1, there exists someiteration step k0 su
h thatkf �A�xk �B�yk � (I ��)�r(x)k k � O(u)�(B)1� ��(B) (kfk+ kAk �Xk)holds for all k � k0.Theorem 3.14 shows that f �A�xk�B�yk will ultimately rea
h the O(u) level. Assoon as the approximate solutions �xk stagnate with k�xk+1 � �xkk � O(u) �Xk+1,the rate of 
onvergen
e of this pro
ess is roughly given by the fa
tor 3��(B)[1���(B)℄�1. Note that similar to subse
tion 1.4 the assumption on the stagnationis not restri
tive. The numeri
al results on a model example are shown in Figure3.13, whi
h reports the relative norms of f � A�xk � B�yk (solid lines) and �r(x)k(dashed lines), and are in a good agreement with Theorem 3.14.
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2.5. Forward error analysis. In this subse
tion we look at the maximumattainable a

ura
y measured by errors x � �xk and y � �yk. The analysis isvery similar to the S
hur 
omplement redu
tion method and therefore we fo
usonly on issues parti
ular to the null-spa
e proje
tion method. We re
all thatrelation (3.32) gives the universal bounds (3.33), (3.34), and (3.35). Independentof the ba
k-substitution s
heme used for 
omputing �yk, the terms 
2k � BT �xkkand 
3k � BT �xkk on the right-hand side of (3.33) and (3.34), respe
tively, arealways proportional to � . The terms with f � A�xk � B�yk depend on the ba
k-substitution formula and their �nal magnitude will be at most O(� ), leading tosimilar 
on
lusions on errors as in subse
tion 1.5. The estimate for kx� �xkkA isgiven in the following theorem.Theorem 3.16. The A-norm of the error x� �xk 
an be bounded askx� �xkkA � Æ1k �BT �xkk+ Æ2k(I ��)(f �A�xk)k; (3.57)where Æ1 � kAk1=2=�min(B) and Æ2 � ��1=2min (A) are 
onstants independent ofthe iteration step k.Proof. Sin
e (I � �)A(x � �xk) = (I � �)(f � A�xk), BTx = 0 and usingkB(BTB)�1k = ��1min(B), kx� �xkk2A 
an be written askx� �xkk2A = (�(x� �xk); A(x� �xk)) + ((I ��)A(x � �xk); x� �xk)� kA1=2kkx� �xkkA(kB(BTB)�1kkBT (x� �xk)k+ k(I ��)(f �A�xk)k):Dividing both sides by kx� �xkkA gives the statement (3.57). �The �rst term on the right-hand side of (3.57) should be zero in exa
t arithmeti
.The 
omputed �xk, however, does not ful�ll �BT �xk = 0 and its departure fromN(BT ) was dis
ussed in (3.47). The se
ond term 
onverges to zero in exa
tarithmeti
 and it is related to the proje
ted residual (I��)(f�A�xk), see Theorem3.53. The result for y��yk 
an be obtained from (3.57) using (3.35). Provided that�r(x)k is larger than O(� ), kx� �xkkA is then well approximated by Æ2k(I��)�r(x)k k.

3. Numerical experiments in the nonsymmetric caseIn this se
tion we 
onsider a nonsymmetri
 blo
k A in the system (3.1). Hen
ethe di�eren
e here is that we apply a nonsymmetri
 iterative method to solvethe S
hur 
omplement system BTA�1By = BTA�1f and the proje
ted system



3. NUMERICAL EXPERIMENTS IN THE NONSYMMETRIC CASE 53(I��)A(I��)x = (I��)f . We demonstrate the theoreti
al results of Se
tions1 and 2 on a simple numeri
al example of a nonsymmetri
 system (3.1) withA = tridiag (1; 10�5;�1) 2 R
100;100; B = rand (100; 50); f = (1; : : : ; 1)T :Sin
e �(A) = kAkkA�1k = 2:00 � 32:15 = 64:27 and �(B) = kBkkByk = 7:39 �0:75 = 5:55, the 
onditioning of matri
es A and B has not a signi�
ant e�e
ton the behavior of 
onsidered s
hemes. For ea
h test we set y0 = 0 and x0 = 0for the S
hur 
omplement redu
tion method and for the null-spa
e proje
tionmethod, respe
tively.The norms of the updated residual ve
tors 
onverge usually to zero or at leastbe
ome orders of magnitude smaller than unit roundo�. It follows from ourtheory that in su
h 
ases the true residuals asso
iated with the approximatesolutions �xk and �yk stagnate on the level proportional to the maximum norms(measured either by �Xk or �Yk) of iterates 
omputed during the whole iterationpro
ess. It is also a well-known fa
t that for methods in whi
h some (�xed) normof the error or the residual de
reases monotoni
ally the maximum attainablea

ura
y level depends then on the norm of the initial residual.One of the most straightforward methods to solve a general nonsymmetri
 sys-tem is the CGNE method [54, 25℄ whi
h transforms the solution of a generalsquare system to the symmetri
 positive (semi)de�nite system of normal equa-tions. Sin
e the CGNE method is nothing but the CG method [54℄ applied tothe system of normal equations, its approximate solution minimizes the 2-normof the error over the asso
iated Krylov subspa
e. Be
ause the 
ondition numberof the system matrix is squared, we 
an expe
t rather slow 
onvergen
e of CGNEin general. Therefore, the use of the GMRES [88℄ method is preferred where theresidual norm is minimized over the entire Krylov subspa
e generated with theoriginal system matrix and 
orresponding right-hand side. Indeed, due to theoptimality of iterates the quantities �Xk and �Yk in CGNE and GMRES appliedeither to the S
hur 
omplement system or to the proje
ted system 
annot be sig-ni�
antly larger than the size of the initial approximations x0, y0 and unknownsx and y. Depending on the a
tual ba
ksubstitution formula the maximum at-tainable a

ura
y level is then proportional either to roundo� unit u or to theparameter � , and the quantities �Yk and �Xk do not play an important role in ourbounds.Unfortunately, for general nonsymmetri
 systems the GMRES method 
annotbe implemented without full re
urren
es. In order to redu
e the storage and
omputational work several 
lasses of nonsymmetri
 iterative methods have been
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luding very popular methods based on the nonsymmetri
 Lan
zospro
ess su
h as Bi-CG [35℄ or CGS [93℄. These methods 
ompute the iterates andresidual ve
tors using short re
urren
es keeping the 
omputational 
ost 
onstantat ea
h iteration step (in 
ontrast to the linear growth for the 
ase of GMRES).The approximate solutions of su
h methods are however no longer optimal andtheir 
onvergen
e behavior 
an be quite irregular (they even may o

asionally failto 
onverge). In pra
ti
e the norms of iterates 
an be
ome very large during theinitial phase of the 
omputation until the iterates begin to 
onverge and �nallyto stagnate near the true solution. For this reason one 
annot give an a prioribound on �Xk and �Yk, and indeed the algorithms for solving the S
hur 
omplementsystem and the proje
ted system su
h as the Bi-CG or CGS method may fail toobtain small ultimate residuals even if the updated residuals 
onverged beyondthe unit roundo�. So the possibility of large iterates may 
orrespondingly a�e
tthe maximum attainable a

ura
y level for su
h nonsymmetri
 iterative methods.An example of these e�e
ts is shown in Figure 3.15 where we 
onsider GMRES,CGNE, Bi-CG and CGS in the S
hur 
omplement redu
tion method with the in-ner systems solved by the dire
t method based on the LU fa
torization of the ma-trix A. Similarly in Figure 3.16 we report the results for the null-spa
e proje
tionmethod, where the inner systems were solved using the Householder QR fa
tor-ization of the matrix B. We have plotted the true residual BTA�1f�BTA�1B�ykand (I � �)(f � A�xk) and the updated residuals �r(y)k and �r(x)k , respe
tively forGMRES (solid lines), CGNE (dash-dotted lines), Bi-CG (dotted lines) and CGS(dashed lines). As the 
omputed residuals 
onverge to zero for all methods (orto the unit roundo� level in the 
ase of the GMRES method), true residuals inthe S
hur 
omplement system and in the proje
ted system behave as indi
atedby the estimates of Theorem 3.1 and 3.9. It is 
lear from Figures 3.15 and 3.16that for the error norm minimizing CGNE and the residual minimizing GMRESis the maximum attainable a

ura
y level proportional to the unit roundo�. Thequantities �Yk and �Xk are 
omparable to the size of unknowns y and x and theydo not a�e
t the limiting a

ura
y of 
omputed approximate solutions. The sit-uation is 
ompletely di�erent for the Bi-CG and CGS methods where the sizeof iterates grows approximately to 105 (for Bi-CG) and to 107 (for CGS) in theS
hur 
omplement redu
tion method, or to 106 (for Bi-CG) and to 1011 (for CGS)in the null-spa
e proje
tion method (see the 
orresponding Tab. 3.1). Indeed,the results 
on�rm that the �nal residuals rea
h the levels whi
h are roughlyequal to O(u) �Yk or O(u) �Xk instead of O(u). Note that the matri
es A and B
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Figure 3.15. Relative norms of the residual BTA�1f �BTA�1B�yk in the S
hur 
omplement redu
tion method withrespe
t to the iteration number for GMRES (solid lines), CGNE(dash-dotted lines), Bi-CG (dotted lines) and CGS (dashed lines)with a dire
t solver used for the solution of inner systems.are well 
onditioned and thus the norms of the S
hur 
omplement matrix andthe proje
ted matrix do not a�e
t the �nal a

ura
y level for this example.In Figures 3.17 and 3.18 we report the norms of the residual f � A�xk � B�yk inthe S
hur 
omplement redu
tion method where the system (3.3) is solved by theBi-CG method (on the left) or by the CGS method (on the right). In ea
h plot weshow the norms of f �A�xk �B�yk for the generi
 update (solid lines), the dire
tsubstitution (dashed lines) and the 
orre
ted dire
t substitution (dotted lines).The inner systems are solved either by the dire
t solver (LU fa
torization) or bythe Bi-CG method with � = 10�12. The presented results 
on�rm our estimatesfrom the previous se
tion. From Figures 3.17 and 3.18 we 
an see the di�eren
ebetween the �nal a

ura
y levels of the norm of f � A�xk � B�yk for the generi
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Figure 3.16. Relative norms of the residual BTA�1f �BTA�1B�yk in the null-spa
e proje
tion method with respe
tto the iteration number for GMRES (solid lines), CGNE (dash-dotted lines), Bi-CG (dotted lines) and CGS (dashed lines) witha dire
t solver used for the solution of inner systems.update (3.10) and for the dire
t substitution (3.11) (see Corollary 3.3 and 3.5). Inthe �rst 
ase, where the ultimate a

ura
y level depends on the maximum normof the iterates �Yk, the residual is essentially growing due to the a

umulation ofthe residuals in inner systems. On the other hand, for the dire
t substitution(3.11) the maximum attainable a

ura
y of the �rst equation in (3.1) is boundedby the norm of the a
tual iterate �yk. The norms of f �A�xk�B�yk are somewhatos
illating whi
h re
e
ts the jumps of k�ykk in the initial phase of the iterationpro
ess. When the norms of �yk begin to stagnate, the norms of f�A�xk�B�yk doso but on mu
h smaller level than for the generi
 update (3.10). This di�eren
ebetween the a

ura
y levels is even more signi�
ant for the CGS method whi
hexhibits mu
h larger os
illations of the iterates. Note that both for Bi-CG and
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hur 
omplement redu
tion Null-spa
e proje
tion�Yk �Yk �Xk �Xk(dir. sol.) (� = 10�12) (dir. sol.) (� = 10�9)GMRES 1:6155�101 1:6155�101 3:9445�101 3:9445�101CGNE 1:6157�101 1:6156�101 3:9445�101 3:9445�101BiCG 9:8556�104 1:5190�106 6:5733�105 6:5733�105CGS 3:3247�107 7:7455�109 5:2896�1010 5:2896�1010Table 3.1. Quantities �Yk and �Xk in the S
hur 
omplementmethod and in the null-spa
e proje
tion method, respe
tively,for GMRES, CGNE, BiCG and CGS.CGS the residual norms for the 
orre
ted dire
t substitution 
onverge to the unitroundo� level and it is not a�e
ted by the os
illations in the initial phase (seeCorollary 3.7).In Figures 3.19 and 3.20 we report the norms of the residual f � A�xk �B�yk forthe null-spa
e proje
tion method where the proje
ted system is solved either bythe Bi-CG method (on the left) or by the CGS method (on the right). In ea
hplot we show the norms of f �A�xk�B�yk for the generi
 update (solid lines), thedire
t substitution (dashed lines) and the 
orre
ted dire
t substitution (dottedlines). The inner systems are solved either by the dire
t solver (Householder QRfa
torization) or by the CGLS method with � = 10�9. The results 
on�rm ourestimates dis
ussed in the previous se
tion. For the dire
t substitution (3.44)the bound for the attainable a

ura
y level of f � A�xk+1 � B�yk+1 depends ontwo terms. The �rst is proportional to the unit roundo� u and to the quantity�Xk, while the se
ond term is proportional to � and to the norm of the a
tualiterate �xk (see Corollary 3.11 and 3.13). Therefore, if the 
onvergen
e behavioris very dramati
, the maximum attainable a

ura
y 
an be signi�
antly a�e
tedby the rounding errors proportional to u dominating the bound over the termsdependent on the parameter � . However, when the 
onvergen
e behavior is quiteregular the ultimate level of the norm of f � A�xk � B�yk does depend also on� . This 
an be seen in Figures 3.19 and 3.20. The �nal level of the residualf � A�xk � B�yk in Bi-CG (with the dire
t substitution s
heme and � = 10�9)is still dependent on � (on the left), while the same quantity for CGS (withmore irregular 
onvergen
e behavior), is a
tually dominated only by the rounding
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Figure 3.17. S
hur 
omplement redu
tion method: Relativenorms of the residual f�A�xk�B�yk for the Bi-CG method usingthe generi
 update (solid lines), the dire
t substitution (dashedlines) and the 
orre
ted dire
t substitution (dotted lines) withthe inner systems solved either by a dire
t solver or by an iter-ative method where � = 10�12.errors (on the right). For other two ba
k-substitution formulas the norms off �A�xk�B�yk ultimately stagnates on the level proportional to u. In 
ontrast tothe S
hur 
omplement redu
tion method for both Bi-CG and CGS the residualsin the 
orre
ted dire
t substitution s
heme (3.45) 
onverge to the level of unitroundo� a�e
ted however by the os
illations of the iterates (see Corollary 3.15).
4. Backward error estimate for the Schur complement reductionWe 
an also interpret the solution 
omputed by an inexa
t method as the ex-a
t solution of a perturbed problem. It seems quite reasonable to use the lo
al
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Figure 3.18. S
hur 
omplement redu
tion method: Relativenorms of the residual f �A�xk �B�yk for the CGS method usingthe generi
 update (solid lines), the dire
t substitution (dashedlines) and the 
orre
ted dire
t substitution (dotted lines) withthe inner systems solved either by a dire
t solver or by an iter-ative method where � = 10�12.ba
kward errors of inner systems to give an estimate on the global ba
kwarderror asso
iated with the original saddle point system. In this se
tion we try toillustrate these ideas to the 
ase of the s
heme A of the S
hur 
omplement redu
-tion (see subse
tion 1.2). Instead of the system (3.1) we 
onsider the generalizedsaddle point system � A BBT �C��xy� = �fy� ; (3.58)where A, B and f are as in the previous se
tions and C is an m � m matrix(often symmetri
 positive semide�nite in appli
ations).
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Figure 3.19. Null-spa
e proje
tion method: Relative normsof the residual f � A�xk � B�yk for the Bi-CG method usingthe generi
 update (solid lines), the dire
t substitution (dashedlines) and the 
orre
ted dire
t substitution (dotted lines) withthe inner systems solved either by a dire
t solver or by an iter-ative method where � = 10�9.Assume that the initial approximation �x0 satis�esA�x0 = 
(f �By0) + s(x)0 ; ks(x)0 k � � (x)0 kAkk�x0k; (3.59)where s(x)0 is the residual. Note that the 
ondition on ks(x)0 k is equivalent to thatused in Se
tion 1.2. Similarly let the 
omputed dire
tion ve
tors p(x)i satisfyA�p(x)i = 
(�B�p(y)i ) + s(p)i ; ks(p)i k � � (p)i kAkk�p(x)i k: (3.60)The ve
tor s(p)i is the 
orresponding residual. Based on these 
onsiderations we
an formulate the following theorem whi
h states that the 
omputed iterates �xk
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Figure 3.20. Null-spa
e proje
tion method: Relative norms ofthe residual f�A�xk�B�yk for the CGS method using the generi
update (solid lines), the dire
t substitution (dashed lines) andthe 
orre
ted dire
t substitution (dotted lines) with the innersystems solved either by a dire
t solver or by an iterative methodwhere � = 10�9.and �yk satisfy a perturbed equation f � (A +�A)x � By = 0. In addition, wegive a bound on the norm of the di�eren
e g �BT �xk + C�yk � �r(y)k .Theorem 3.17. The iterates 
omputed with the algorithm of the S
hur 
om-plement redu
tion method using the ba
k-substitution formula (3.10) satisfythe inequality kf � (A+�A(k))�xk �B�ykk� ukfk+ 5kukAk �Xk + (1 + 
+ (5 + 2
)k)ukBk�Yk: (3.61)



62 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSwhere the perturbation matrix �A(k) is given by�A(k) �  �s(x)0 � k�1Xi=0 �is(p)i ! �xTkk�xkk2with k�A(k)k � 
kkAk; 
k � � (x)0 k�x0k+Pk�1i=0 � (p)i k��i�p(x)i kk�xkkand �Xk � maxfk�xik j i = 0; 1; : : : ; kg; �Yk � maxfk�yik j i = 0; 1; : : : ; kg:The norm of the gap between the true residual g � BT �xk + C�yk and theupdated one �r(y)k 
an be bounded as followskg�BT �xk+C�yk� �r(y)k k � ukgk+(3+
+(12+2
)k)u(kBk �Xk+kCk�Yk): (3.62)Proof. The 
omputed iterates �xi and �yi (i = 0; 1; : : :) satisfy�xi+1 = �xi + ��i�p(x)i +�xi+1; k�xi+1k � uk�xik+ 2uk��i�p(x)i k+O(u2); (3.63)�yi+1 = �yi + ��i �p(y)i +�yi+1; k�yi+1k � uk�yik+ 2uk��i�p(y)i k+O(u2): (3.64)Sin
e k��i�p(x)i k � k�xi+1k+ k�xik+ k�xi+1k, we obtaink��i�p(x)i k � (1+2u)k�xi+1k+(1+3u)k�xik+O(u2) � (2+5u) �Xi+1+O(u2) (3.65)and hen
e the inequality (3.63) be
omesk�xi+1k � 2uk�xi+1k+ 3uk�xik+O(u2) � 5u �Xi+1 +O(u2): (3.66)Similarlyk��i�p(y)i k � (1+2u)k�yi+1k+(1+3u)k�yik+O(u2) � (2+5u) �Yi+1+O(u2) (3.67)and hen
e the inequality (3.64) be
omesk�yi+1k � 2uk�yi+1k+ 3uk�yik+O(u2) � 5u�Yi+1 +O(u2): (3.68)The 
omputed updated residual satis�es�r(y)i+1 = �r(y)i � ��iBT �p(x)i + ��iC �p(y)i +�r(y)i+1 (3.69)with k�r(y)i+1k � uk�r(y)i k+ (3 + 
)u(kBkk��i�p(x)i k+ kCkk��i�p(y)i k) +O(u2):



4. BACKWARD ERROR ESTIMATE 63Using (3.65) and (3.67) we getk�r(y)i+1k � uk�r(y)i k+ (6 + 2
)u(kBk �Xi+1 + kCk�Yi+1) +O(u2): (3.70)To obtain the �rst statement (3.61), we start withf �A�xi+1 �B�yi+1 = f �A�xi �B�yi � ��iA�p(x)i � ��iB�p(y)i �A�xi+1 �B�yi+1= f �A�xi �B�yi � ��is(p)i + ��i(
(B�p(y)i )�B�p(y)i )�A�xi+1 �B�yi+1whi
h givesf �A�xk �B�yk = �s(x)0 � k�1Xi=0 ��is(p)i� (
(f �By0)� (f �By0))+ k�1Xi=0 ���i(
(B�p(y)i )�B�p(y)i )�A�xi+1 �B�yi+1�using (3.59) and (3.60). Now (3.61) follows by taking norms and using (3.66),(3.68) and the de�nition of �A(k). The se
ond statement (3.62) follows fromg�BT �xi+1+C�yi+1��r(y)i+1 = g�BT �xi+C�yi��r(y)i �BT�xi+1+C�yi+1��r(y)i+1:The re
ursive use of this identity givesg �BT �xk + C�yk � �r(y)k = g �BT �x0 + Cy0 � �r(y)0+ k�1Xi=0(�BT�xi+1 + C�yi+1 ��r(y)i+1): (3.71)It 
an be easily shown by indu
tion that �r(y)i = g�BT �xi+C�yi+O(u) and hen
e(3.70) be
omes k�r(y)i+1k � (7 + 2
)u(kBk �Xi+1+ kCk�Yi+1) +O(u2) and taking anorm on both sides of (3.71) proves the desired result. �The theorem shows that the 
omputed iterates �xk and �yk are the blo
k 
ompo-nents of the exa
t solution ve
tor of the perturbed saddle point problem�A+�A(k) BBT �C���xk�yk� = �f +�fkg +�gk� ; (3.72)where k�fkk � O(u)(kfk + kAk �Xk + kBk�Yk);k�gkk � O(u)(kgk+ kBk �Xk + kCk�Yk) + k�r(y)k k:



64 CHAPTER 3. LIMITING ACCURACY OF SADDLE POINT SOLVERSWhen the norm of �r(y)k drops below the level of unit roundo� the iterates �xkand �yk satisfy the system (3.72), where the inexa
tness of inner systems is 
on-
entrated mainly in the perturbed matrix A +�A(k), while the right-hand sideis a�e
ted only by an O(u) perturbation. The inner ba
kward errors � (x)0 and� (p)i should be small enough to ensure that the perturbed matrix A +�A(k) isnonsingular whi
h gives an upper bound on 
k. However this quantity dependson terms known the step k of the iteration pro
ess and it is not 
lear at themoment how to 
hoose a priori the inner toleran
es � (x)0 and � (p)i to ensure thatthe 
ondition 
k < 1=�(A) will hold. See [90, 39℄ for similar issues related toGMRES and FOM, and [2, 3℄ for the ba
kward error analysis when sparse elim-ination te
hniques 
ombined with iterative methods are applied to the solutionof saddle point problems arising in sparse quadrati
 programming problems.



CHAPTER 4
Numerical stability of some residual minimizing

Krylov subspace methodsIn this 
hapter we 
onsider 
ertain methods for solving a system of linear algebrai
equations Ax = b; A 2 R
N�N ; b 2 R

N ; (4.1)where A is a large and sparse nonsingular matrix that is, in general, nonsymmet-ri
. For solving su
h systems, Krylov subspa
e methods are very popular. Theybuild a sequen
e of iterates xn (n = 0; 1; 2; : : :) su
h that xn 2 x0 + Kn(A; r0),where Kn(A; r0) � spanfr0; Ar0; : : : ; An�1r0g is the nth Krylov subspa
e gen-erated by the matrix A from the residual r0 � b � Ax0 that 
orresponds tothe initial guess x0. Many approa
hes for de�ning su
h approximations xn havebeen proposed, see, e.g., the books by Greenbaum [47℄, Meurant [72℄, and Saad[87℄. In parti
ular, due to their smooth 
onvergen
e behavior, minimum residualmethods satisfyingkrnk = min~x2x0+Kn(A;r0) kb�A~xk; rn � b�Axn; (4.2)are widely used, e.g., the GMRES algorithm of Saad and S
hultz [88℄.The 
lassi
al implementation of GMRES makes use of a nested sequen
e oforthonormal bases of the Krylov subspa
es Kn(A; r0). These bases are gener-ated by an Arnoldi pro
ess [6℄. With the notation �0 � kr0k, q1 � ��10 r0,Qn � [q1; : : : ; qn℄, where the 
olumns of Qn form this orthonormal basis ofKn(A; r0), and with an (n + 1) � n upper Hessenberg matrix Hn+1;n, its result
an be 
ast in matrix form as[q1; AQn℄ = Qn+1[e1; Hn+1;n℄:This 
an be viewed as the QR fa
torization of the matrix [q1; AQn℄. Ultimately,an approximate solution xn satisfying the minimum residual property (4.2) is
onstru
ted in the form xn = x0 + Qnyn, but xn is not needed at every step.65



66 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSFrom the relation krnk = kr0 �AQnynk = k�0e1 �Hn+1;nynkit follows that yn is the solution of the (n + 1) � n least squares problemHn+1;nyn � �0e1, and that krnk equals the norm of its residual �0e1�Hn+1;nyn 2
R
n+1. This problem 
an be solved via the re
ursive QR fa
torization of Hn+1;n,updated by applying n Givens rotations and determining a new one in the nthstep. On
e the norm of the residual is small enough | whi
h 
an be seen with-out expli
itly solving the least squares problem | the triangular system withthe 
omputed R-fa
tor is solved, and the approximate solution xn is 
omputed.In [27, 48, 78℄ it was shown that this \
lassi
al" version of the GMRES methodis ba
kward stable provided that the Arnoldi pro
ess is implemented using themodi�ed Gram-S
hmidt algorithm or Householder re
e
tions.Here we deal with a di�erent approa
h proposed by Walker and Zhou [103℄, who
alled it the Simpler GMRES method. To derive it, we re
all that the minimumresidual property (4.2) is equivalent to the orthogonality 
onditionrn ? AKn(A; r0);where ? is the orthogonality relation indu
ed by the standard Eu
lidean innerprodu
t h�; �i. Instead of building an orthonormal basis of Kn(A; r0) we look foran orthonormal basis Vn � [v1; : : : ; vn℄ of AKn(A; r0). As proposed by Walkerand Zhou, we 
ould 
onstru
t it again by an Arnoldi pro
ess. This leads to theQR fa
torization A[q1; Vn�1℄ = VnUn; (4.3)where Un is an n�n upper triangular matrix. We propose a generalization that
onsists in allowing to repla
e this Arnoldi pro
ess. Instead of using the imageAvn�1 of the last 
onstru
ted orthonormal basis ve
tors to extend the basiswe 
onsider any nested sequen
e of matri
es Zn�1 � [z1; : : : ; zn�1℄ su
h thatthe 
olumns of [q1; Zn�1℄ form a basis of Kn(A; r0), and we make use of Azn�1to extend the basis. We may assume that the 
olumns zk of Zn�1 have unitlength (and we will do so in the error analysis), but they need not be mutuallyorthogonal. The orthonormal basis Vn of AKn(A; r0) is thus obtained from theQR fa
torization of the image of [q1; Zn�1℄:A[q1; Zn�1℄ = VnUn: (4.4)Sin
e rn 2 r0 + AKn(A; r0) = r0 +R(Vn) and rn ? R(Vn), we 
an obtain theresidual from rn = (I � VnV Tn )r0. Note that rn is just the orthogonal proje
tion



67of r0 onto the orthogonal 
omplement of R(Vn). To 
ompute it we apply themodi�ed Gram-S
hmidt method, whi
h leads to the re
ursionrn = rn�1 � �nvn; �n � hrn�1; vni: (4.5)This re
ursion 
an be 
ast into a matrix relation too. Let Rn+1 � [r0; : : : ; rn℄,let Dn � diag(�1; : : : ; �n), and let Ln+1;n 2 R
(n+1)�n be the bidiagonal matrixwith ones on the main diagonal and minus ones on the �rst subdiagonal; then(4.5) 
an be written as Rn+1Ln+1;n = VnDn: (4.6)Sin
e the 
olumns of [q1; Zn�1℄ are a basis of Kn(A; r0), we 
an represent xn inthe form xn = x0 + [q1; Zn�1℄tn; (4.7)so that rn = r0 � A[q1; Zn�1℄tn = r0 � VnUntn. Due to the minimum residualproperty, we have rn ? R(Vn), and thus simplyUntn = V Tn r0 = [�1; : : : ; �n℄T : (4.8)Hen
e, on
e the residual norm is small enough, we 
an solve this triangularsystem and 
ompute xn = x0 + [q1; Zn�1℄tn. We 
all this general approa
hthe simpler approa
h. It in
ludes, as a spe
ial 
ase, Simpler GMRES, whereZn�1 � Vn�1. We will also be interested in the 
ase of the residual basis[q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄, whi
h we will 
all SGMRES/RB, where \RB"refers to \residual basis" (this method has been re
ently derived and imple-mented also by Yvan Notay).Re
ursion (4.5) reveals the 
onne
tion between the simpler approa
h and yetanother minimum residual approa
h. Let us set pn � A�1vn, Pn � [p1; : : : ; pn℄.Then, left-multiplying (4.5) by A�1 yieldsxn = xn�1 + �npn; �n = hrn�1; Apni; (4.9)or, in matrix form, Xn+1Ln+1;n = �PnDnwith Xn+1 � [x0; : : : ; xn℄. This shows that pn 2 Kn(A; r0) is a dire
tion ve
tor:it has the dire
tion in whi
h one moves from xn�1 to xn. The step length �n
an be determined from one of the formulas on the right-hand side of (4.5) or(4.9). Re
all that it follows from the 
ondition hrn�1; vni = 0, whi
h enfor
esthe minimization of krnk on the line � 7! rn�1 � �vn. So, instead of 
omputingthe 
oordinates tn of xn � x0 with respe
t to the 
olumns of [q1; Zn�1℄ �rst, we
an dire
tly update xn from (4.9). However, this requires that we 
onstru
t the



68 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSdire
tion ve
tor pn (or a s
alar multiple of it). Now, note that left-multiplying(4.4) by A�1 yields [q1; Zn�1℄ = PnUn: (4.10)If Un is known from (4.4), a re
ursion for pn 
an be extra
ted from this formula.Note that it has the same re
urren
e 
oeÆ
ients (stored in the 
olumns of Un)that are used in the Gram-S
hmidt pro
ess in (4.4); so the two re
ursions 
an berun in the same loop. The obvious disadvantages of this approa
h is that we haveto store both all the dire
tion ve
tors pn and all the original orthonormal basisve
tors vn = Apn. Moreover, any roundo� errors in Un may have a strong e�e
ton Pn. However, as we will see, this is the pri
e we have to pay if we want to applythe simple and 
onvenient 2-term update formulas (4.5) and (4.9) and spend onlyone matrix-ve
tor (MV) produ
t per step, namely Azn�1 in (4.4) (or Avn�1 in(4.3) if Zn�1 � Vn�1). The 
ase Zn�1 � Vn�1 of this method was proposed in[84℄ under the name ATA{variant of GMRES. We will use here the terminologyupdate approa
h for this 
ase and, more exa
tly, re�ned ORTHODIR for theparti
ular 
ase with Zn�1 � Vn�1, sin
e, as we will see, it is a re�ned versionof the residual norm minimizing ORTHODIR algorithm [33, 110℄. Likewise the
ase with Zn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whi
h 
an be viewed as a re�ned version ofthe ORTHOMIN algorithm [102, 110℄ (or the GCR method of Elman [30, 29℄,and is identi
al to the GMRESR method [101℄ of van der Vorst and Vuik with the
hoi
e u(0)n = rn), will be referred to as re�ned ORTHOMIN (see our 
ommentsbelow).The re�ned ORTHODIR and ORTHOMIN algorithms with residual norm min-imization started from the fa
t that the dire
tion ve
tors pn of the minimumresidual method 
hara
terized by (4.2) are ATA{orthonormal to ea
h other: sin
eVn = APn, we have P Tn ATAPn = V Tn Vn = I . Be
ause dire
tions are only de-termined up to a s
alar multiple, we might give up the normalization of Vn and
hoose instead P Tn ATAPn = V Tn Vn to be a nonsingular diagonal matrix. So,in analogy to (4.4), we 
an dire
tly 
ompute the 
olumns of Pn = [p1; : : : ; pn℄and Un from (4.10), and 
omplement this by the expli
it su

essive evaluation ofVn = APn (whi
h, at the same time, serves for extending the Krylov subspa
e).Again, we 
an view (4.10) as either an Arnoldi pro
ess for an ATA-orthogonalbasis if we 
hoose Zn�1 � APn�1, or as a Gram-S
hmidt implementation of aQR de
omposition of [q1; Zn�1℄ with respe
t to the ATA{inner produ
t if Zn�1originates elsewhere. The 
ase where Zn�1 � APn�1, q1 � r0, and Un is unittriangular 
orresponds to the original ORTHODIR algorithm [33, 110℄; the 
asewhere Zn�1 � [r1; : : : ; rn�1℄, q1 � r0, and Un is unit triangular yields a version



69of the ORTHOMIN algorithm as proposed by Young and Jea [110℄, whi
h was
alled GCR by Elman [30℄. Despite the popularity of the name GCR we willmostly use the older name ORTHOMIN here, whi
h also underlines the analogyto ORTHODIR. Details 
an also be found in [8℄ (
hoosing B = ATA and C = Ithere). The 
ases with short-term re
urren
es have been treated in detail in [59℄and [9℄.However, what we have 
on
ealed in these des
riptions is that we need a se
-ond matrix-ve
tor produ
t, namely Avn�1 in ORTHODIR and Arn in OR-THOMIN, to 
ompute the 
oeÆ
ients of the orthogonal proje
tion (i.e., of theGram-S
hmidt algorithm). Due to the ATA{orthogonality, in ORTHODIR therelevant proje
tion of Apn�1 is pn = (I � Pn�1(APn�1)TA)Apn�1, whi
h withVn�1 = APn�1 may be written as pn = (I�Pn�1V Tn�1A)vn�1. The new ve
tor vn
ould be instead of vn = (I � Vn�1V Tn�1)Avn�1 
omputed dire
tly as vn = Apn,whi
h requires an extra MV. An analogue 
onsideration holds for ORTHOMIN.So, in this form, these algorithms are not 
ompetitive. Some remarks on theirstability were drawn in [47℄; we will not 
over these implementations here.The well-known remedy suggested by Vinsome [102℄ and Eisenstadt, Elman, andS
hultz [29℄ 
onsists in 
omputing and storing both Pn and Vn. This is a
hievedby 
omputing Vn with either the Arnoldi pro
ess (4.3) or with another QR de-
omposition of A[r0; r1; : : : ; rn�1℄ analogous to (4.4). But this means that up tothe s
aling of the bases Pn, Vn, and Zn we return to the re�ned ORTHODIR andre�ned ORTHOMIN algorithms dis
ussed above. The remaining di�eren
e be-tween Vinsome's ORTHOMIN and our re�ned ORTHOMIN is that we normalizethe residuals before orthogonalizing them, and that we use normalized dire
tionve
tors. The analog is true for the di�eren
e between the usual implementationof ORTHODIR and our re�ned ORTHODIR. The importan
e of normalizing theresiduals before the orthogonalization will be seen later.The se
tions of this 
hapter are organized as follows. In Se
tion 1 we analyze�rst the maximum attainable a

ura
y of the simpler approa
h based on (4.3)or (4.4) for vn and (4.7), (4.8) for xn. Then we turn to the update approa
hbased on (4.3) or (4.4) for vn, (4.10) for pn, and (4.9), (4.5) for xn and rn.To keep the text readable, we assume rounding errors only in sele
ted, mostrelevant parts of the 
omputation. The bounds presented in Theorems 4.1 and4.2 show that the 
onditioning of the matrix [q1; Zn�1℄ plays an important rolein the numeri
al stability of these s
hemes. Both theorems give bounds on themaximum attainable a

ura
y measured by the normwise ba
kward error. Whilefor the simpler approa
h this quantity does not depend on the 
onditioning of



70 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSA, the bound for the update approa
h is proportional to �(A) (as we will showin our 
onstru
ted numeri
al example, the bound is attainable). However, thedependen
e on �(A) is usually an overestimate; in pra
ti
e, both the simpler andupdate approa
hes behave almost equally for the same 
hoi
e of the basis. Thisis espe
ially true for the relative errors of the 
omputed approximate solutions,where we give essentially the same upper bound. The situation is 
ompletelyanalogous to results for the GMRES method [88℄ and the MINRES method [79℄given by Sleijpen, van der Vorst and Modersitzki in [92℄.In Se
tion 2 we derive parti
ular results for two 
hoi
es of the basis [q1; Zn�1℄.First for [q1; Zn�1℄ = [q1; Vn�1℄ leading to Simpler GMRES by Walker andZhou [103℄ and to re�ned ORTHODIR. Then for [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄,whi
h leads to SGMRES/RB and re�ned ORTHOMIN, respe
tively. It appearsthat the two 
hoi
es lead to truly di�erent behavior in the 
ondition numberof Un, whi
h governs the stability of the 
onsidered s
hemes. Sin
e all thesemethods 
onverge in a �nite number of iterations, we �x the iteration indexn su
h that r0 62 AKn�1(A; r0), that is, the exa
t solution has not yet beenrea
hed. Based on this we give 
onditions on the linear independen
e of thebasis [q1; Zn�1℄. It is known that [r0; : : : ; rn�1℄ 
an be rank de�
ient when theGMRES method stagnates (the breakdown o

urs in ORTHOMIN and hen
ealso in SGMRES/RB), while this does not happen for [q1; Vn�1℄ (Simpler GM-RES and ORTHODIR are breakdown-free). On the other hand, we show thatwhile the 
hoi
e [q1; Zn�1℄ = [q1; Vn�1℄ leads to inherently less numeri
ally sta-ble s
hemes, the se
ond sele
tion [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄ gives rise to
onditionally stable implementations provided we have some reasonable resid-ual de
rease. In parti
ular, we show that the SGMRES/RB implementation is
onditionally ba
kward stable. Our theoreti
al results are illustrated by sele
tednumeri
al experiments.Throughout the text, we denote by k � k the Eu
lidean ve
tor norm and theindu
ed matrix norm, and by k�kF the Frobenius norm. Moreover, for B 2 R
N�n(N � n) of rank n, �1(B) � �n(B) > 0 are the extremal singular values of B,and �(B) = �1(B)=�n(B) is the spe
tral 
ondition number. By I we denote theunit matrix of a suitable dimension, by ek (k = 1; 2; : : :) its kth 
olumn, and welet e � [1; : : : ; 1℄T . We assume the standard model of �nite pre
ision arithmeti
with the unit roundo� u (see Higham [55℄ for details). In our bounds, insteadof distinguishing between several 
onstants (whi
h are in fa
t polynomials in Nand n that 
an di�er from pla
e to pla
e), we use a generi
 
onstant 
.



1. MAXIMUM ATTAINABLE ACCURACY 71
1. Maximum attainable accuracy of simpler and update approachesIn this se
tion we analyze the numeri
al stability of the simpler and updateapproa
hes formulated in the previous se
tion. In order to make our analysisreadable, we assume that only the 
omputations performed in (4.4), (4.8) and(4.10) are a�e
ted by rounding errors and that the 
omputed Q-fa
tor in the QRfa
torization (4.4) is 
lose to an orthonormal matrix and has beed 
omputed ina ba
kward stable way. Hen
e we assume that the 
omputed (orthogonal) fa
torVn and the upper triangular fa
tor Un in the QR fa
torization (4.4) satisfyA[q1; Zn�1℄ = VnUn + Fn; kFnk � 
ukAkk[q1; Zn�1℄k; (4.11)and kVn � V̂nk � 
u, where V̂n is the nearest orthonormal matrix satisfyingV̂ Tn V̂n = I . For simpli
ity, we will not distinguish between Vn and V̂n and assumethat Vn is exa
tly orthonormal. For details we refer to [15, 55℄. From [106, 55℄we have for the 
omputed solution t̂n of (4.8) that(Un +�Un)t̂n = Dne; j�Unj � 
ujUnj; (4.12)where the absolute value and inequalities are understood 
omponent-wise. Theapproximation x̂n to x is then 
omputed asx̂n = x0 + [q1; Zn�1℄t̂n: (4.13)The 
ru
ial quantity for the analysis of the maximum attainable a

ura
y is thegap between the true residual b � Ax̂n of the 
omputed approximation and theupdated residual rn obtained from the update formula (4.5) des
ribing the pro-je
tion of the previous residual; see [47, 52℄. In fa
t, on
e the true residualbe
omes negligible 
ompared to the true one (and in the algorithms 
onsideredhere it ultimately will), the gap equals the true residual divided by kAkkx̂nk,whi
h therefore 
an be thought of as the ba
kward error of the ultimate approx-imate solution x̂n (after suitable normalization). Here is our basi
 result on thisgap for the simpler approa
h.Theorem 4.1. In the simpler approa
h, the gap between the true residualb�Ax̂n and the updated residual rn satis�eskb�Ax̂n � rnkkAkkx̂nk � 
u�([q1; Zn�1℄)�1 + kx0kkx̂nk� :Proof. From (4.13) we have b�Ax̂n = r0 �A[q1; Zn�1℄t̂n = r0 � (VnUn +Fn)(Un + �Un)�1Dne, and (4.5) gives rn = r0 � VnDne. Using the identityI � Un(Un + �Un)�1 = �Un(Un + �Un)�1 and the relation [q1; Zn�1℄(Un +



72 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODS�Un)�1Dne = [q1; Zn�1℄t̂n = x̂n � x0 we 
an express the gap between b � Ax̂nand rn asb�Ax̂n � rn = (Vn � (VnUn + Fn)(Un +�Un)�1)Dne= (Vn�Un + Fn)(Un +�Un)�1Dne= (Vn�Un + Fn)[q1; Zn�1℄y[q1; Zn�1℄(Un +�Un)�1Dne= (Vn�Un + Fn)[q1; Zn�1℄y(x̂n � x0): (4.14)Taking the norm, 
onsidering (4.11), and noting that the terms involving Vn�Unand Fn 
an be subsumed into the generi
 
onstant 
, we getkb�Ax̂n � rnk � 
ukAkk[q1; Zn�1℄kk[q1; Zn�1℄yk(kx̂nk+ kx0k): (4.15)Division by kAkkx̂nk 
on
ludes the proof. �In the following we analyze the maximum attainable a

ura
y of the updateapproa
h. In a

ordan
e with (4.11) we assume that in �nite pre
ision arithmeti
the 
omputed dire
tion ve
tors satisfy[q1; Zn�1℄ = PnUn +Gn; kGnk � 
ukPnkkUnk: (4.16)Note that the norm of the matrix Gn 
annot be bounded by 
ukAkk[q1; Zn�1℄kas it is in the 
ase of the QR fa
torization (4.11). As in (4.9) we 
ompute thenthe approximate solution x̂n aŝxn = x̂n�1 + �npn: (4.17)Theorem 4.2. In the update approa
h, the gap between the true residualb�Ax̂n and the updated residual rn satis�eskb�Ax̂n � rnkkAkkx̂nk � 
u�(A)�([q1; Zn�1℄)�1 + kx0kkx̂nk� ;provided that �n � 1� 
u�(A)�([q1 ; Zn�1℄) > 0.Proof. Sin
e x̂n = x0 + PnDne = x0 + ([q1; Zn�1℄�Gn)U�1n Dne and rn =r0 � VnDne, we have thatb�Ax̂n � rn = (Vn �A[q1; Zn�1℄U�1n )Dne+AGnU�1n Dne= (�Fn +AGn)U�1n Dne (4.18)due to (4.4). From (4.4) and (4.16), we get Pn = A�1Vn + (A�1Fn � Gn)U�1n .Taking a norm we obtain kPnk � kA�1k + 
u�(A)kU�1n k + 
ukPnk�(Un). The



1. MAXIMUM ATTAINABLE ACCURACY 73norm of the residual matrix Gn in (4.16) 
an hen
e be estimated askGnk � 
u�(A)k[q1; Zn�1℄k: (4.19)Owing to (4.17), we have the identity U�1n Dne = U�1n P ynPnDne = U�1n P yn(x̂n �x0), and kU�1n P ynk � ��1n k[q1; Zn�1℄yk following from (4.16). Thus we obtainkU�1n Dnek � ��1n k[q1; Zn�1℄yk(kx̂nk+ kx0k); (4.20)whi
h together with (4.18), (4.19), and (4.11) proves the statement of the theo-rem. �The bound on the ultimate ba
kward error given in Theorem 4.2 is worse that theone of Theorem 4.1. We see that for the simpler approa
h the normwise ba
kwarderror is on the order of the roundo� unit, whereas for the update approa
h wehave an upper bound proportional to the 
ondition number of A. In terms ofthe residual norms, this leads to the bounds involving 
u�(A)�([q1; Zn�1℄) and
u�2(A)�([q1; Zn�1℄) terms for the simpler and update approa
h, respe
tively.From Theorems 4.1 and 4.2, we 
an also estimate the ultimate level of the relative2-norm of the error of both the simpler and update approa
h. However, as shownbelow, it appears that the update approa
h leads to the approximate solutionwith essentially the same a

ura
y level in the error as the simpler approa
h.Similar phenomenonwas also observed by Sleijpen, van der Vorst and Modersitzki[92℄ in the symmetri
 
ase for GMRES and MINRES.Corollary 4.3. The gap between the 
omputed approximate solutions x̂nand exa
t approximations xn in both the simpler (xn = x0 + [q1; Zn�1℄tn)and update (xn = xn�1 + �npn) approa
hes 
an be bounded bykxn � x̂nkkxk � 
u�(A)�([q1 ; Zn�1℄)kx̂nk+ kx0kkxk ; (4.21)provided that �n � 1� 
u�(A)�([q1; Zn�1℄) > 0.Proof. For the simpler approa
h, the result follows dire
tly from Theorem4.1. For the update approa
h, using (4.18) we havexn � x̂n = x� x̂n �A�1rn = (�A�1Fn +Gn)U�1n Dneand the statement now follows from (4.11), (4.19) and (4.20). �The bound (4.21) from Corollary 4.3 depends on the quantity (kx̂nk+kx0k)=kxk(or more pre
isely on kx̂n � x0k=kxk), whi
h is, however, strongly in
uen
edby the 
onditioning of the upper triangular matrix Un. As shown in Se
tion 2,
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an be ill-
onditioned for a parti
ular 
ase [q1; Zn�1℄ = [q1; Vn�1℄leading thus to inherently less numeri
ally stable s
hemes, whereas the s
hemeswith [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄ under some assumptions give rise to the well-
onditioned triangular matrix Un. In the following lemma we give bounds onkx̂n � x0k in terms of the singular values of the matrix Un.Lemma 4.4. In the simpler approa
h, we havekx̂n � x0k � k[q1; Zn�1℄kkt̂nk � k[q1; Zn�1℄kk(Un +�Un)�1Dnek;and in the update approa
h,kx̂n � x0k � kPnDnek � (1 + 
u�(A))k[q1; Zn�1℄kkU�1n Dnek:The norms of (Un +�Un)�1Dne and U�1n Dne satisfyk(Un +�Un)�1DnekkU�1n Dnek ) � p2 nXk=1 krk�1k�k(Uk)� p2kA�1k nXk=1 ��1k krk�1k�k([q1; Zk�1℄) ; (4.22)provided that �k � 1� 
u�(A)�([q1 ; Zk�1℄) > 0 for all k = 1; : : : ; n.Proof. Sin
e eTkDnek = �k and j�kj =pkrk�1k2 � krkk2 � p2krk�1k, wehave k(Un +�Un)�1Dnek � nXk=1 k(Un +�Un)�1Dnekk� p2 nXk=1 krk�1k�k([Un +�Un℄1:k;1:k) ; (4.23)where [Un+�Un℄1:k;1:k denotes the prin
ipal k�k submatrix of Un+�Un. Owingto (4.12), we 
an estimate the perturbation of [Un℄1:k;1:k = Uk as k[�Un℄1:k;1:kk �
ukUkk. Perturbation theory of singular values shows that�k([Un +�Un℄1:k;1:k) � �k(Uk)� 
ukUkk� �k(A[q1; Zk�1℄)� 
ukAkk[q1; Zk�1℄k� �N(A)�k([q1; Zk�1℄)� 
ukAkk[q1; Zk�1℄k; (4.24)whi
h, together with (4.23), 
on
ludes the proof of the �rst inequality. These
ond inequality is proved analogously. �



1. MAXIMUM ATTAINABLE ACCURACY 75The �rst estimate given in (4.22), whi
h involves the minimal singular valuesof Uk (k = 1; : : : ; n), is quite sharp. However, the se
ond estimate relating theminimal singular values of Uk to those of [q1; Zk�1℄ 
an be a large overestimate,as also observed in our numeri
al experiments in Se
tion 2. Using Lemma 4.4we 
an give the following estimates for the gap between the true and updatedresiduals in the simpler and update approa
hes.Corollary 4.5. In the simpler approa
h, the gap between the true residualkb�Ax̂nk and the updated residual rn satis�eskb�Ax̂nk � 
u�(A)k[q1; Zn�1℄k nXk=1 ��1k krk�1k�k([q1; Zk�1℄) :In the update approa
h, the same quantity 
an be estimated askb�Ax̂nk � 
u�2(A)k[q1; Zn�1℄k nXk=1 ��1k krk�1k�k([q1; Zk�1℄) :Theorems 4.1 and 4.2 indi
ate that as soon as the ba
kward error of the approx-imate solution in the simpler approa
h gets below 
u�(A)�([q1 ; Zn�1℄), then thedi�eren
e between the ba
kward errors in the simpler and update approa
hesmay be
ome visible and 
an be expe
ted to be up to the order of �(A). Based onour experien
e it is diÆ
ult to �nd an example where this di�eren
e is signi�
ant.Similarly to Sleijpen, van der Vorst and Modersitzki [92℄, we use here a model ex-ample, where A = G1DGT2 2 R
100�100 with D = diag(10�8; 2 �10�8; 3; 4; : : : ; 100)and with G1 and G2 being Givens rotations over an angle of �4 in the (1; 10)-planeand the (1; 100)-plane, respe
tively; �nally, b = e. The numeri
al experimentswere performed in MATLAB using double pre
ision arithmeti
 (u � 10�16), andthe zero ve
tor was 
hosen as the initial guess x0. In Figure 4.1 we have plot-ted the normwise ba
kward errors kb � Ax̂nk=(kAkkx̂nk) (solid lines), relative2-norms of the residuals kb � Ax̂nk=kbk (dashed lines) and the relative 2-normsof the errors kx� x̂nk=kxk (dash-dotted lines) for Simpler GMRES and re�nedORTHODIR, respe
tively. The same quantities for SGMRES/RB and re�nedORTHOMIN are reported in Figure 4.2. We see that the a
tual ba
kward errorsand relative residual norms are 
lose until where they stagnate: for re�ned OR-THODIR and re�ned ORTHOMIN this happens approximately at a level 
loseto u�(A) for the ba
kward errors and u�2(A) for the residuals, while for SimplerGMRES and SGMRES/RB we have stagnation on the roundo� unit level. In
ontrast, the 2-norms of the errors stagnate on the u�(A) level in all 
onsidereds
hemes.
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2. Choice of basis and numerical stabilityIn this se
tion we dis
uss the two main parti
ular 
hoi
es for the matrix Zn�1leading to di�erent algorithms for the simpler and update s
hemes. For the sakeof simpli
ity, we assume exa
t arithmeti
 here. First, we 
hoose Zn�1 = Vn�1,whi
h leads to the Simpler GMRES method of Walker and Zhou [103℄ and to there�ned version of ORTHODIR by Young and Jea [110℄, respe
tively. Hen
e, we
hoose fq1; v1; : : : ; vn�1g as a basis of Kn(A; r0). To be sure that su
h a 
hoi
eis adequate, we state the following simple lemma.Lemma 4.6. Let v1; : : : ; vn�1 be an orthonormal basis of AKn�1(A; r0) and letr0 62 AKn�1(A; r0). Then the ve
tors q1; v1; : : : ; vn�1 form a basis of Kn(A; r0).
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relative error (Refined ORTHOMIN)Figure 4.2. The test problem solved by SGMRES/RB and re-�ned ORTHOMIN.Proof. It follows from the assumption r0 62 AKn�1(A; r0) implying thatq1 62 AKn�1(A; r0) = spanfv1; : : : ; vn�1g. �Note that if r0 2 AKn(A; r0), then the 
ondition (4.2) yields xn = A�1b, rn = 0,and any implementation of a minimum residual method will terminate. Lemma4.6 ensures that it makes sense to build an orthonormal basis Vn of AKn(A; r0)by the su

essive orthogonalization of the 
olumns of the matrix A[q1; Vn�1℄ via(4.4). It re
e
ts the fa
t that, for any initial residual r0, both Simpler GMRESand ORTHODIR 
onverge (in exa
t arithmeti
) to the exa
t solution; see [110℄.However, as observed by Liesen, Rozlo�zn��k and Strako�s [66℄, this 
hoi
e of thebasis is not very suitable from the stability point of view. This short
oming isre
e
ted by the unbounded growth of the 
ondition number of [q1; Vn�1℄ dis
ussednext. The upper bound was also derived in the paper [103℄.



78 CHAPTER 4. NUMERICAL STABILITY OF KRYLOV SUBSPACE METHODSTheorem 4.7. Let r0 62 AKn�1(A; r0). Then the 
ondition number of [q1; Vn�1℄satis�es kr0kkrn�1k � �([q1; Vn�1℄) � 2 kr0kkrn�1k :Proof. Sin
e rn�1 = (I � Vn�1V Tn�1)r0, it is easy to see that rn�1 is theresidual of the least squares problem Vn�1y � r0. The statement follows fromTheorem 3.2 of [66℄. �The 
onditioning of [q1; Vn�1℄ is thus related to the 
onvergen
e of the method; inparti
ular, it is inversely proportional to the a
tual relative norm of the residual.Hen
e, if the residual is small enough, Simpler GMRES and re�ned ORTHODIRbehave unstably. In pra
ti
e, this diÆ
ulty 
an be 
ountera
ted by frequentrestarts.Now we turn to the se
ond 
hoi
e, Zn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whi
h leads toSGMRES/RB (whi
h we propose here as a more stable 
ounterpart of SimplerGMRES) and to the re�ned version of ORTHOMIN by Vinsome [102℄ knownalso under the name GCR; see Eisenstat, Elman and S
hultz [30, 29℄. We have[q1; Zn�1℄ = RnB�1n , where Bn � diag(kr0k; : : : ; krn�1k), i.e., we 
hoose s
aledresiduals r0; : : : ; rn�1 as the basis of Kn(A; r0). To be sure that su
h a 
hoi
e isadequate, we state the following result.Lemma 4.8. Let v1; : : : ; vn�1 be an orthonormal basis of AKn�1(A; r0) andlet r0 62 AKn�1(A; r0) and rk = (I � VkV Tk )r0, where Vk � [v1; : : : ; vk℄, k =1; 2; : : : ; n� 1. Then the following statements are equivalent:(1) krkk < krk�1k for all k = 1; : : : ; n� 1,(2) r0; : : : ; rn�1 are linearly independent.Proof. Sin
e r0 62 AKn�1(A; r0) = R(Vn�1), rk 6= 0 for all k = 0; 1; : : : ; n�1. It is 
lear that krkk < krk�1k if and only if hrk�1; vki 6= 0. If that holds for allk = 1; : : : ; n�1 the diagonal matrixDn�1 is nonsingular. Using the relation (4.6)we �nd that Rn[Ln;n�1; en℄ = [Vn�1Dn�1; rn�1℄. Sin
e rn�1 ? Vn�1, the matrix[Vn�1Dn�1; rn�1℄ has orthogonal nonzero 
olumns, and hen
e its rank equalsn. Moreover, rank([Ln;n�1; en℄) = n and thus rank(Rn) = n, i.e., r0; : : : ; rn�1are linearly independent. Conversely, from the same matrix relation we �ndthat if r0; : : : ; rn�1 are linearly independent, then rank([Vn�1Dn�1; rn�1℄) = n,and hen
e Dn�1 is nonsingular, whi
h proves that krkk < krk�1k for all k =1; : : : ; n� 1. �



2. CHOICE OF BASIS AND NUMERICAL STABILITY 79Therefore if the method does not stagnate, i.e., if the 2-norms of the residualsr0; : : : ; rn�1 are stri
tly monotonously de
reasing, then r0; : : : ; rn�1 are linearlyindependent. In this 
ase, we 
an build an orthonormal basis Vn of AKn(A; r0)by the su

essive orthogonalization of the 
olumns of ARnB�1n via (4.4). Ifr0 2 AKn�1(A; r0), we have an exa
t solution of (4.1), and the method stopswith xn�1 = A�1b.Several 
onditions for the non-stagnation of the minimum residual method havebeen given in the literature. For example, Eisenstat, Elman and S
hultz [29, 30℄show that GCR (and hen
e any minimum residual method) does not stagnate ifthe symmetri
 part of A is positive de�nite, i.e., if the origin is not 
ontainedin the �eld of values of A. See also Greenbaum and Strako�s [50℄ for a di�erentproof, and Eiermann and Ernst [28℄. Several other 
onditions 
an be found inSimon
ini and Szyld [91℄ and the referen
es therein. If stagnation o

urs, theresiduals are no longer linearly independent, and thus the method prematurelybreaks down. In parti
ular, if 0 2 F(A), 
hoosing x0 su
h that r0 2 F(A) leadsto a breakdown in the �rst step. This was �rst pointed out by Young and Jea[110℄ with a simple 2� 2 example.However, as shown in the following theorem, when the minimum residual methoddoes not stagnate, the 
olumns of RnB�1n are a reasonable 
hoi
e for the basis ofKn(A; r0).Theorem 4.9. If r0 62 AKn�1(A; r0), the 
ondition number of RnB�1n satis�es1 � �(RnB�1n ) � pn
n; 
n �vuut1 + n�1Xk=1 krk�1k2 + krkk2krk�1k2 � krkk2 : (4.25)Proof. From (4.6) it follows thatRnB�1n [Qn;n�1; en℄ = [Vn�1; rn�1krn�1k ℄; Qn;n�1 � BnLn;n�1D�1n�1:Sin
e [Vn�1; rn�1krn�1k ℄ is an orthonormal matrix, we have from Theorem 3.3.16 of[58℄ 1 = �n([Vn�1; rn�1krn�1k ℄) � �n(RnB�1n )k[Qn;n�1; en℄k� �n(RnB�1n )k[Qn;n�1; en℄kF :
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relative error (Refined ORTHODIR)Figure 4.3. The test problem FS1836 solved by Simpler GM-RES and re�ned ORTHODIR.The value of k[Qn;n�1; en℄kF 
an be dire
tly 
omputed ask[Qn;n�1; en℄kF =vuut1 + n�1Xk=1 krk�1k2 + krkk2krk�1k2 � krkk2 ;sin
e �2k = krk�1k2 � krkk2. The statement follows using kRnB�1n k � pn. �We de�ne the quantity 
n in (4.25) as the stagnation fa
tor. The 
onditioningof RnB�1n is thus related to the 
onvergen
e of the method, but in 
ontrast tothe 
onditioning of [q1; Vn�1℄, it is related to the intermediate de
rease of theresidual norms, not to the residual de
rease with respe
t to the initial residual.
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])

uκ(U
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uκ(A)Figure 4.4. The test problem FS1836 solved by Simpler GM-RES and re�ned ORTHODIR.We illustrate our theoreti
al results by a numeri
al example using the matrixFS1836 (kAk � 1:18 � 109, kA�1k � 1:47 � 102) obtained from the Matrix Market[1℄ with the right-hand side b = Ae (see also the experiments in [66℄, wherethe relative residual norms were reported). In Figures 4.3 and 4.5, we showthe normwise ba
kward error kb � Ax̂nk=(kAkkx̂nk) (solid lines), relative 2-norms of the residuals kb � Ax̂nk=kbk (dashed lines) and relative 2-norms ofthe error kx � x̂nk=kxk (dotted lines with 
ir
les and 
rosses) for the 
hoi
e[q1; Zn�1℄ = [q1; Vn�1℄ that 
orresponds to Simpler GMRES and re�ned OR-THODIR, and for [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄ 
orresponding to SGMRES/RBand re�ned ORTHOMIN, respe
tively. The quantities u�([q1; Zn�1℄), u�(Un)and u�(A) are depi
ted by solid, dashed and dash-dotted lines in Figures 4.4 and4.6. We see that the ba
kward errors, the residual norms, and the error norms are
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relative error (Refined ORTHOMIN)Figure 4.5. The test problem FS1836 solved by SGMRES/RBand re�ned ORTHOMIN.almost identi
al for the simpler and update approa
hes. This 
an be observed inmost 
ases leading to pra
ti
ally negligible di�eren
e between Simpler GMRESand re�ned ORTHODIR, and SGMRES/RB and re�ned ORTHOMIN, respe
-tively. Figure 4.3 illustrates our theoreti
al 
onsiderations and shows that, aftersome initial redu
tion, the ba
kward error (or residual norm) of Simpler GM-RES and re�ned ORTHODIR may stagnate on a signi�
antly higher level thanthe ba
kward error (or residual norm) of SGMRES/RB or re�ned ORTHOMIN,whi
h stagnates on a level proportional to the roundo� unit, as shown in Figure4.5. Due to Theorem 4.7, after some initial phase, the norms of errors (as well asresiduals) start to diverge in Simpler GMRES and re�ned ORTHODIR, while forSGMRES/RB and re�ned ORTHOMIN we have a stagnation on a level approx-imately proportional to u�(A). The di�eren
e is 
learly 
aused by the 
hoi
e of
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uκ(A)Figure 4.6. The test problem FS1836 solved by SGMRES/RBand re�ned ORTHOMIN.the basis [q1; Zn�1℄, whi
h has an e�e
t on the 
onditioning of the matrix Un.We see that [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄ remains well-
onditioned up to thevery end of the iteration pro
ess, while the 
onditioning of [q1; Vn�1℄ is linked tothe 
onvergen
e of Simpler GMRES and may lead to a very ill-
onditioned tri-angular matrix Un. Consequently the approximate solution x̂n 
omputed from(4.8) be
omes ina

urate and its error starts to diverge. Sin
e the stagnationfa
tor 
n � 55:8 (for n = 50), the matrix Un remains well-
onditioned, and thisproblem does not o

ur in the SGMRES/RB method.





CHAPTER 5
Conclusions and open questionsIn this thesis we studied the numeri
al behavior of several iterative methods forthe solution of systems of linear algebrai
 equations. In Chapter 3 we looked atthe numeri
al behavior of 
ertain inexa
t saddle point solvers. In parti
ular, forseveral mathemati
ally equivalent implementations, we studied the in
uen
e ofinexa
t solution of inner systems and estimate their maximum attainable a

u-ra
y. When 
onsidering the outer iteration pro
ess, our analysis lead to resultssimilar to ones whi
h 
an be obtained assuming exa
t arithmeti
. The situa-tion was di�erent, when we looked at the residuals in the saddle point system.We showed that some implementations lead ultimately to residuals on the levelof roundo� unit independently on the fa
t that the inner systems were solvedinexa
tly. Indeed, our results 
on�rm that the generi
 and a
tually the 
heap-est implementations deliver the approximate solutions, whi
h satisfy either these
ond or the �rst blo
k equation to the working a

ura
y. In addition, theimplementations with 
orre
ted dire
t substitution are also very attra
tive. Wegave a theoreti
al explanation for the behavior whi
h was probably observed oris already ta
itly known. The implementations that we point out as optimal area
tually those, whi
h are widely used and suggested in appli
ations. It appearsthat, when measured in terms of the errors, the maximum attainable a

ura
ylevel is similar for all 
onsidered implementations and it is proportional to theba
kward error toleran
e of inner systems.In Chapter 4 we studied the numeri
al behavior of several minimum residualmethods mathemati
ally equivalent to GMRES. Two general formulations wereanalyzed: the simpler approa
h that does not require an upper Hessenberg fa
-torization and the update approa
h whi
h is based on generating a sequen
e ofappropriately 
omputed dire
tion ve
tors. It was shown that for the simpler ap-proa
h our analysis leads to an upper bound for the ba
kward error proportionalto the roundo� unit, whereas for the update approa
h the same quantity 
an bebounded by a term proportional to the 
ondition number of A. Although our85



86 CHAPTER 5. CONCLUSIONS AND OPEN QUESTIONSanalysis suggests that there maybe a di�eren
e between both approa
hes up tothe order of �(A), in pra
ti
e they behave very similarly and it is very diÆ
ult to�nd an example with a signi�
ant di�eren
e in the limiting a

ura
y. Moreover,when looking at the errors, we note that both approa
hes lead essentially to thesame a

ura
y of the 
omputed approximate solutions.We indi
ated that the 
hoi
e of the basis [q1; Zn�1℄ is the most important issuefor the stability of the 
onsidered s
hemes. Our analysis supports the well-known fa
t that, even when implemented with the best possible orthogonalizationte
hniques, Simpler GMRES and ORTHODIR are inherently less stable due tothe 
hoi
e [q1; Zn�1℄ = [q1; Vn�1℄. The situation be
omes signi�
antly better,when we use the residual basis [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄. This 
hoi
e leads tothe popular GCR, ORTHOMIN and GMRESRmethods, whi
h are widely used inappli
ations. Assuming some reasonable residual de
rease (whi
h happens almostalways in �nite pre
ision arithmeti
), we showed that this s
heme is quite eÆ
ientand proposed a 
onditionally ba
kward stable variant (
alled SGMRES/RB here).Our theoreti
al results in a sense justify the use of the GCR method in pra
ti
al
omputations.There are several open problems 
onne
ted to the topi
 of this thesis.
Various stopping criteria for inner systems. The analysis in Chapter3 is based on the ba
kward error stopping 
riterion in inner systems. It 
ouldbe interesting to 
ompare other stopping 
riteria based, e.g., on the relativeresiduals or estimates of energy errors in the S
hur 
omplement method. Therelation between the A-norm of x�xk and the BTA�1B-norm of y�yk 
an leadto a stopping 
riterion based on the energy norm of x � xk. However, it is not
ompletely 
lear how to do this, when the systems with A are not solved exa
tly.
Corrected substitution in stationary iterative methods. We saw inChapter 3 that for the S
hur 
omplement redu
tion and null-spa
e proje
tionmethods, it is more preferable to update the approximation xk+1 using the 
or-re
ted dire
t substitution than to 
ompute it dire
tly. Analogous results holdalso for stationary iterative methods. Consider the system Ax = b with a non-singular matrix A and its splitting A = M � N , where M is also nonsingular.A stationary iterative method then generates the approximations to x satisfyingMxk+1 = Nxk + b starting from some x0. Higham and Knight [56℄ analyzedthis implementation in �nite pre
ision arithmeti
, and they showed that thelimiting a

ura
y depends on the maximum relative norm of the approximatesolutions �xi (i = 0; : : : ; k). However, it is mu
h more bene�
ial, in su
h a 
ase,



87rather than 
ompute xk+1 = M�1(Nxk + b), to use the \
orre
ted" formulaxk+1 = xk +M�1rk, where rk = b � Axk. We saw in Se
tion 1.4 of Chapter 3that the �nal level of the residual f � A�xk �B�yk does not depend on the max-imum norm of the iterates during the whole iteration pro
ess but only on thosein a few last iterations. The similar observation 
an be made also in the 
ase ofthe \
orre
ted" implementation of the stationary iteration, and the idea 
an bealso extended to two-stage iterative methods, e.g., when applying the SIMPLEmethod for the solution of 
uid 
ow problems (see, e.g., [81℄).
Backward error analysis of segregated methods. In Se
tion 4 of Chap-ter 3 we interpret the inexa
t solution 
omputed with the S
hur 
omplementredu
tion method (using the generi
 update) as an exa
t solution of the saddlepoint problem with a perturbed upper-left matrix blo
k. The similar ba
kwarderror analysis should be performed also for other implementations of the S
hur
omplement redu
tion method and for the null-spa
e proje
tion method. More-over, the analysis of the null-spa
e proje
tion should 
onsider also a parti
ularproje
tion method for 
omputing the dire
tion ve
tors.
Preconditioned residual basis. In Chapter 4, we did not 
onsider theissue of pre
onditioning or, we assume, that the system Ax = b is already pre-
onditioned. It does not make mu
h sense to pre
ondition the methods usingthe basis [q1; Vn�1℄ su
h as Simpler GMRES or ORTHODIR due to their inher-ent instability. One 
an restart the method to over
ome this problem, but notethat the restart is ne
essary when the method be
omes unstable, i.e., when it
onverges fast! It seems reasonable to use (�xed or 
exible) pre
onditioning inthe 
ase of the residual basis (the pre
onditioned SGMRES/RB and GCR). Itis sometimes observed that the pre
onditioned residual basis of GCR (i.e., GM-RESR [101℄) is more preferable than, e.g., pre
onditioned GMRES (with a �xedpre
onditioner) or 
exible GMRES [86℄, whi
h use the pre
onditioned orthonor-mal basis of Kn(A; r0). Moreover, faster 
onvergen
e 
ould be observed whenusing pre
onditioned residuals. This issue needs to be analyzed further.





Bibliography[1℄ Matrix Market. URL: http://math.nist.gov/MatrixMarket.[2℄ M. Arioli. The use of QR fa
torization in sparse quadrati
 programming and ba
kwarderror issues. SIAM J. Matrix Anal. Appl., 21(3):825{839, 2000.[3℄ M. Arioli and L. Baldini. A ba
kward error analysis of a null spa
e algorithm in sparsequadrati
 programming. SIAM J. Matrix Anal. Appl., 23(2):425{442, 2001.[4℄ M. Arioli and C. Fassino. Roundo� error analysis of algorithms based on Krylov subspa
emethods. BIT, 36(2):189{206, 1996.[5℄ M. Arioli and F. Romani. Stability, 
onvergen
e, and 
onditioning of stationary iterativemethods of the form x(i+1) = Px(i)+q for the solution of linear systems. IMA J. Numer.Anal., 12:21{30, 1992.[6℄ W. E. Arnoldi. The prin
iple of minimized iterations in the solution of the matrix eigen-value problem. Quart. Appl. Math., 9:17{29, 1951.[7℄ K. Arrow, L. Hurwi
z, and H. Uzawa. Studies in Nonlinear Programming. Stanford Uni-versity Press, Stanford, CA, 1958.[8℄ S. F. Ashby and M. H. Gutkne
ht. A matrix analysis of 
onjugate gradient algorithms.In M. Natori and T. Nodera, editors, Advan
es in Numeri
al Methods for Large SparseSets of Linear Systems, Parallel Pro
essing for S
ienti�
 Computing, volume 9, pages32{47, Yokohama, Japan, 1993. Keio University.[9℄ S. F. Ashby, T. A. Manteu�el, and P. E. Saylor. A taxonomy for 
onjugate gradientmethods. SIAM J. Numer. Anal., 27(6):1542{1568, 1990.[10℄ J. Atanga and D. Silvester. Iterative methods for stabilized mixed velo
ity-pressure �niteelements. Internat. J. Numer. Methods Fluids, 14:71{81, 1992.[11℄ O. Axelsson and P. S. Vassilevski. A bla
k box generalized 
onjugate gradient solverwith inner iterations and variable-step pre
onditioning. SIAM J. Matrix Anal. Appl.,12(4):625{644, 1991.[12℄ C. Ba
uta. A uni�ed approa
h for Uzawa algorithms. SIAM J. Numer. Anal., 44(6):2633{2649, 2006.[13℄ M. Benzi and G. H. Golub. A pre
onditioner for generalized saddle point problems. SIAMJ. Matrix Anal. Appl., 26:20{41, 2004.[14℄ M. Benzi, G. H. Golub, and J. Liesen. Numeri
al solution of saddle point problems. A
taNumeri
a, 14:1{137, 2005.[15℄ A. Bj�or
k. Solving linear least squares problems by Gram{S
hmidt orthogonalization.BIT, 7:1{21, 1967.[16℄ A. Bj�or
k. Numeri
al Methods for Least Squares Problems. SIAM, Philadelphia, 1996.89



90 CHAPTER 5. BIBLIOGRAPHY[17℄ A. M. Bollen. Numeri
al stability of des
ent methods for solving linear equations. Numer.Math., 43:361{377, 1984.[18℄ A. Bouras and V. Frayss�e. Inexa
t matrix-ve
tor produ
ts in Krylov methods for solvinglinear systems: a relaxation strategy. SIAM J. Matrix Anal. Appl., 26(3):660{678, 2005.[19℄ A. Bouras, V. Frayss�e, and L. Giraud. A relaxation strategy for inner-outer linear solversin domain de
omposition methods. Te
hni
al Report TR/PA/00/17, CERFACS, Fran
e,2000.[20℄ D. Braess, P. Deu
hard, and K. Lipnikov. A subspa
e 
as
adi
 multigrid method formortar elements. Computing, 69(3):205{225, 2002.[21℄ D. Braess and R. Sarazin. An eÆ
ient smoother for the Stokes problem. Appl. Numer.Math., 23(1):3{19, 1997.[22℄ J. H. Bramble, J. E. Pas
iak, and A. T. Vassilev. Analysis of the inexa
t Uzawa algorithmfor saddle point problems. SIAM J. Numer. Anal., 34(3):1072{1092, 1997.[23℄ J. H. Bramble, J. E. Pas
iak, and A. T. Vassilev. Inexa
t Uzawa algorithms for nonsym-metri
 saddle point problems. Math. Comp., 69:667{689, 2000.[24℄ F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, volume 15 ofSpringer Series in Computational Mathemati
s. Springer-Verlag, New York, 1991.[25℄ E. J. Craig. The N-step iteration pro
edures. J. Math. Physi
s, 34:64{73, 1955.[26℄ J. W. Demmel, N. J. Higham, and R. S. S
hreiber. Stability of the blo
k LU fa
torization.Numer. Linear Algebra Appl., 2(2):173{190, 1995.[27℄ J. Drko�sov�a, A. Greenbaum, M. Rozlo�zn��k, and Z. Strako�s. Numeri
al stability of GM-RES. BIT, 35(3):309{330, 1995.[28℄ M. Eiermann and O. Ernst. Geometri
 aspe
ts of the theory of Krylov subspa
e methods.A
ta Numeri
a, pages 251{312, 2001.[29℄ S. C. Eisenstat, H. C. Elman, and M. H. S
hultz. Variational iterative methods for non-symmetri
 systems of linear equations. SIAM J. Numer. Anal., 20(2):345{357, 1983.[30℄ H. C. Elman. Iterative methods for large sparse nonsymmetri
 systems of linear equations.PhD thesis, New Haven, 1982.[31℄ H. C. Elman and G. H. Golub. Inexa
t and pre
onditioned Uzawa algorithms for saddlepoint problems. SIAM J. Numer. Anal., 31(6):1645{1661, 1994.[32℄ H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast IterativeSolvers: with Appli
ations in In
ompressible Fluid Dynami
s. Oxford University Press,New York, 2005.[33℄ D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra. Fizmatgiz,Moskow, 1960. in russian.[34℄ B. Fis
her, A. Ramage, D. J. Silvester, and A. J. Wathen. Minimum residual methodsfor augmented systems. BIT, 38:527{543, 1998.[35℄ R. Flet
her. Conjugate gradient methods for inde�nite systems. In G. A. Watson, editor,Pro
eedings of the Dundee Biennial Conferen
e on Numeri
al Analysis, pages 73{89, NewYork, 1975. Springer-Verlag.[36℄ A. Frommer and D. B. Szyld. H-Splittings and two-stage iterative methods. Numer.Math., 63:345{356, 1992.[37℄ E. Giladi, G. H. Golub, and J. B. Keller. Inner and outer iterations for the Chebyshevalgorithm. SIAM J. Numer. Anal., 35:300{319, 1998.



91[38℄ P. E. Gill, W. Murray, and M. H. Wright. Pra
ti
al Optimization. A
ademi
 Press In
.,London, 1981.[39℄ L. Giraud, S. Gratton, and J. Langou. Convergen
e in ba
kward error of relaxed GMRES.SIAM J. S
i. Comput., 29(2):710{728, 2007.[40℄ G. H. Golub. Bounds for the round-o� errors in the Ri
hardson se
ond order method.BIT, 2:212{223, 1962.[41℄ G. H. Golub and M. L. Overton. The 
onvergen
e of inexa
t Chebyshev and Ri
hardsoniterative methods for solving linear systems. Numer. Math., 53(5):571{593, 1988.[42℄ G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins UniversityPress, 3rd edition, 1996.[43℄ G. H. Golub and Q. Ye. Inexa
t pre
onditioned 
onjugate gradient method with inner-outer iteration. SIAM J. S
i. Comput., 21(4):1305{1320, 1999.[44℄ N. I. M. Gould, M. E. Hribar, and J. No
edal. On the solution of equality 
onstrained qua-drati
 programming problems arising in optimization. SIAM J. S
i. Comput., 23(4):1376{1395, 2001.[45℄ A. Greenbaum. Behavior of slightly perturbed Lan
zos and 
onjugate-gradient re
ur-ren
es. Linear Algebra Appl., 113:7{63, 1989.[46℄ A. Greenbaum. A

ura
y of 
omputed solutions from 
onjugate-gradient-like methods.In M. Natori and T. Nodera, editors, Advan
es in Numeri
al Methods for Large SparseSets of Linear Systems, volume 10, pages 126{138, Keio University, Yokohama, Japan,1994.[47℄ A. Greenbaum. Estimating the attainable a

ura
y of re
ursively 
omputed residualmethods. SIAM J. Matrix Anal. Appl., 18(3):535{551, 1997.[48℄ A. Greenbaum, M. Rozlo�zn��k, and Z. Strako�s. Numeri
al behaviour of the modi�ed Gram-S
hmidt GMRES implementation. BIT, 37(3):706{719, 1997.[49℄ A. Greenbaum and Z. Strako�s. Predi
ting the behaviour of �nite pre
ision Lan
zos and
onjugate gradient 
omputations. SIAM J. Matrix Anal. Appl., 13:121{137, 1992.[50℄ A. Greenbaum and Z. Strako�s. Matri
es that generate the same Krylov residual spa
es.In G. H. Golub, A. Greenbaum, and M. Luskin, editors, Re
ent Advan
es in IterativeMethods, pages 95{119, New York, 1994. Springer-Verlag.[51℄ M. H. Gutkne
ht and M. Rozlo�zn��k. Residual smoothing te
hniques: do they improvethe limiting a

ura
y of iterative solvers? BIT, 41(1):86{114, 2001.[52℄ M. H. Gutkne
ht and Z. Strako�s. A

ura
y of two three-term and three two-term re
ur-ren
es for Krylov spa
e solvers. SIAM J. Matrix Anal. Appl., 22(1):213{229, 2000.[53℄ S. J. Hammarling and J. H. Wilkinson. The pra
ti
al behaviour of linear iterative meth-ods with parti
ular referen
e to S.O.R. Te
hni
al Report NAC 69, National Physi
alLaboratory, England, Sept. 1976.[54℄ M. R. Hestenes and E. Stiefel. Methods of 
onjugate gradients for solving linear systems.J Res. Natl. Bur. Stand., 49:409{436, 1952.[55℄ N. J. Higham.A

ura
y and Stability of Numeri
al Algorithms. SIAM, Philadelphia, 1996.[56℄ N. J. Higham and P. A. Knight. Componentwise error analysis for stationary iterativemethods. In C. D. Meyer and R. J. Plemmons, editors, Linear Algebra, Markov Chains,and Queueing Models, volume 48 of IMA Volumes in Mathemati
s and Its Appli
ations,pages 29{46, 1993.



92 CHAPTER 5. BIBLIOGRAPHY[57℄ R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York,1985.[58℄ R. A. Horn and C. R. Johnson. Topi
s in Matrix Analysis. Cambridge University Press,new edition, 1994.[59℄ K. C. Jea and D. M. Young. On the simpli�
ation of generalized 
onjugate-gradientmethods for nonsymmetrizable linear systems. Linear Algebra Appl., 52:399{417, 1983.[60℄ P. Jir�anek and M. Rozlo�zn��k. Limiting a

ura
y of segregated solution methods for non-symmetri
 saddle point problems. J. Comput. Appl. Math., 2007. to appear.[61℄ P. Jir�anek and M. Rozlo�zn��k. Maximum attainable a

ura
y of inexa
t saddle pointsolvers. SIAM J. Matrix Anal. Appl., 2007. to appear.[62℄ P. Jir�anek, M. Rozlo�zn��k, and M. H. Gutkne
ht. How to make Simpler GMRES and GCRmore stable. 2007. in preparation.[63℄ C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint pre
onditioning for inde�nitelinear systems. SIAM J. Matrix Anal. Appl., 21(4):1300{1317, 2000.[64℄ P. J. Lan
zkron, D. J. Rose, and D. B. Szyld. Convergen
e of nested 
lassi
al iterativemethods for linear systems. Numer. Math., 58:685{702, 1991.[65℄ C. Lan
zos. An iteration method for the solution of the eigenvalue problem of lineardi�erential and integral operators. J. Res. Natl. Bur. Stand., 45:255{281, 1950.[66℄ J. Liesen, M. Rozlo�zn��k, and Z. Strako�s. Least squares residuals and minimal residualmethods. SIAM J. S
i. Comp., 23(5):1503{1525, 2002.[67℄ J. Liesen and Z. Strako�s. On numeri
al stability in large s
ale linear algebrai
 
omputa-tions. Z. Angew. Math. Me
h., 85:307{325, 2005.[68℄ J. Liesen and P. Ti
h�y. Convergen
e analysis of Krylov subspa
e methods. GAMM Mitt.Ges. Angew. Math. Me
h., 27(2):153{173 (2005), 2004.[69℄ M. S. Lynn. On the round-o� error in the method of su

essive overrelaxation. Math.Comp., 18(85):36{49, 1964.[70℄ J. Mary�ska, M. Rozlo�zn��k, and M. T�uma. S
hur 
omplement redu
tion in the mixed-hybrid approximation of Dar
y's law: rounding error analysis. J. Comput. Appl. Math.,117:159{173, 2000.[71℄ J. Mary�ska, M. Rozlo�zn��k, and M. T�uma. S
hur 
omplement systems in the mixed-hybrid�nite element approximation of the potential 
uid 
ow problem. SIAM J. S
i. Comput.,22:704{723, 2000.[72℄ G. Meurant. Computer Solution of Large Linear Systems. North Holland, 1999.[73℄ N. K. Ni
hols. On the 
onvergen
e of two-stage iterative pro
esses for solving linearequations. SIAM J. Numer. Anal., 10(3):460{469, 1973.[74℄ J. No
edal and S. Wright. Numeri
al Optimization. Springer, 1999.[75℄ Y. Notay. On the 
onvergen
e rate of the 
onjugate gradients in presen
e of roundingerrors. Numer. Math., 65:301{317, 1993.[76℄ Y. Notay. Flexible 
onjugate gradients. SIAM J. S
i. Comp., 22(4):1444{1460, 2000.[77℄ C. C. Paige. Error analysis of the Lan
zos algorithm for tridiagonalizing a symmetri
matrix. J. Inst. Maths. Appli
s, 18:341{349, 1976.[78℄ C. C. Paige, M. Rozlo�zn��k, and Z. Strako�s. Modi�ed Gram-S
hmidt (MGS), least squares,and ba
kward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1):264{284,2006.



93[79℄ C. C. Paige and M. A. Saunders. Solution of sparse inde�nite systems of linear equations.SIAM J. Numer. Anal., 12:617{629, 1975.[80℄ C. C. Paige and Z. Strako�s. Residual and ba
kward error bounds in minimum residualKrylov subspa
e methods. SIAM J. S
i. Comput., 23(6):1899{1924, 2002.[81℄ S. V. Parankar. Numeri
al Heat Transfer and Fluid Flow. M
Graw-Hill, 1980.[82℄ A. Ramage and A. J. Wathen. Iterative solution te
hniques for the Stokes and Navier-Stokes equations. Internat. J. Numer. Methods Fluids, 19(1):67{83, 1994.[83℄ M. Rozlo�zn��k and V. Simon
ini. Krylov subspa
e methods for saddle point problems withinde�nite pre
onditioning. SIAM J. Matrix Anal. Appl., 24(2):368{391, 2002.[84℄ M. Rozlo�zn��k and Z. Strako�s. Variants of residual minimizing Krylov subspa
e methods.In I. Marek, editor, Pro
eedings of the 6th Summer S
hool Software and Algorithms ofNumeri
al Mathemati
s, pages 208{225, 1995.[85℄ T. Rusten and R. Winther. A pre
onditioned iterative method for saddle-point problems.SIAM J. Matrix Anal. Appl., 13:887{904, 1992.[86℄ Y. Saad. Flexible inner-outer pre
onditioned GMRES algorithm. SIAM J. S
i. Comput.,14(2):461{469, 1993.[87℄ Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.[88℄ Y. Saad and M. H. S
hultz. GMRES: a generalized minimal residual algorithm for solvingnonsymmetri
 linear systems. SIAM J. S
i. Stat. Comp., 7(3):856{869, 1986.[89℄ V. Simon
ini and I. Perugia. Blo
k-diagonal and inde�nite symmetri
 pre
onditioners formixed �nite element formulations. Numer. Linear Algebra Appl., 7(8):585{616, 2000.[90℄ V. Simon
ini and D. B. Szyld. Theory of inexa
t Krylov subspa
e methods and appli
a-tions to s
ienti�
 
omputing. SIAM J. S
i. Comput., 25(2):454{477, 2003.[91℄ V. Simon
ini and D. B. Szyld. New 
onditions for non-stagnation of minimal residualmethods. Te
hni
al Report 07-4-17, Apr. 2007.[92℄ G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. Di�eren
es in the e�e
ts ofrounding errors in Krylov solvers for symmetri
 inde�nite linear systems. SIAM J. MatrixAnal. Appl., 22(3):726{751, 2000.[93℄ P. Sonneveld. CGS, A fast Lan
zos-type solver for nonsymmetri
 linear systems. SIAMJ. S
i. Stat. Comp., 10:36{52, 1989.[94℄ E. Stiefel. Relaxationsmethoden bester Strategie zur L�osung linearer Glei
hungssysteme.Comm. Math. Helv., 29:157{179, 1955.[95℄ Z. Strako�s. On the real 
onvergen
e rate of the 
onjugate gradient method. Linear AlgebraAppl., 154{156:535{549, 1991.[96℄ Z. Strako�s and P. Ti
h�y. On error estimation in the 
onjugate gradient method and whyit works in �nite pre
ision 
omputations. Ele
tron. Trans. Numer. Anal., 13:56{80, 2002.[97℄ J. van den Eshof and G. L. G. Sleijpen. Inexa
t Krylov subspa
e methods for linearsystems. SIAM J. Matrix Anal. Appl., 26(1):125{153, 2004.[98℄ J. van den Eshof, G. L. G. Sleijpen, and M. B. van Gijzen. Relaxation strategies fornested Krylov methods. J. Comp. Appl. Math., 177(2):125{153, 2005.[99℄ A. van der Sluis and H. A. van der Vorst. The rate of 
onvergen
e of 
onjugate gradients.Numer. Math., 48:543{560, 1986.[100℄ H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly 
onverging variant of Bi-CG forthe solution of non-symmetri
 linear systems. SIAM J. S
i. Stat. Comput., 13:631{644,1992.



94 CHAPTER 5. BIBLIOGRAPHY[101℄ H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numer.Linear Algebra Appl., 1(4):369{386, 1994.[102℄ P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneouslinear equations. In Pro
eedings Fourth Symposium on Reservoir Simulation, SPE ofAIME, Los Angeles, Feb. 1976.[103℄ H. F. Walker and L. Zhou. A simpler GMRES. Numer. Linear Algebra Appl., 1(6):571{581, 1994.[104℄ P. A. Wedin. Perturbation theory for pseudo-inverses. BIT, 13(2):217{232, 1973.[105℄ C. Wieners and B. I. Wohlmuth. Duality estimates and multigrid analysis for saddlepoint problems arising from mortar dis
retizations. SIAM J. S
i. Comp., 24(6):2163{2184, 2003.[106℄ J. H. Wilkinson.Rounding Errors in Algebrai
 Pro
esses. Prenti
e Hall, In
., New Jersey,1963.[107℄ H. Wo�zniakowski. Numeri
al stability of the Chebyshev method for the solution of largelinear systems. Numer. Math., 28:191{209, 1977.[108℄ H. Wo�zniakowski. Round-o� error analysis of iterations for large linear systems. Numer.Math., 30:301{314, 1978.[109℄ H. Wo�zniakowski. Roundo�-error analysis of a new 
lass of 
onjugate-gradient algorithms.Linear Algebra Appl., 29:507{529, 1980.[110℄ D. M. Young and K. C. Jea. Generalized 
onjugate gradient a

eleration of nonsym-metrizable iterative methods. Linear Algebra Appl., 34:159{194, 1980.[111℄ W. Zulehner. A 
lass of smoothers for saddle point problems. Computing, 65:227{246,2000.[112℄ W. Zulehner. Analysis of iterative methods for saddle point problems: a uni�ed approa
h.Math. Comp., 71(238):479{505, 2002.



Pavel Jir�anek
Limiting Accuracy of Iterative MethodsPhD ThesisFa
ulty of Me
hatroni
s and Interdis
iplinary Engineering StudiesTe
hni
al University of Libere
Cze
h Republi
Institute of Computer S
ien
eA
ademy of S
ien
es of the Cze
h Republi
Cze
h Republi



