Page: Details * Launch: 0- 683 - clear_buffer * Y ~ AddBaseline = Apply Rules Occupancy Calculator Save as PDF -~

Launch Time Cycles Regs GPU SM Frequency CC Process ® © 0 0
[Current 683 - clear_buffer (7579, 1, 1)x(128,1,1) 1.19 msecond 1,306,665 16 0 - NVIDIA GeForce RTX 2070 with Max-Q Design 1.09 cycle/nsecond 7.5 [6769] rama3
» GPU Speed Of Light Throughput - O

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each
individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.

Compute (SM) Throughput [%] 0.26 Duration [msecond] 1.19
Memory Throughput [%] 1.69 Elapsed Cycles [cycle] 1,306,665
L1/TEX Cache Throughput [%] 2.06 SM Active Cycles [cycle] 1,249 246.94
L2 Cache Throughput [%] 1.69 SM Frequency [cycle/nsecond] 1.09
DRAM Throughput [%] 0.39 DRAM Freguency [cycle/nsecond] 5.99
A Ll . This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput and/or memory bandwidth below 60.0% of peak ®
o denii typically indicate latency issues. Look at and for potential reasons.
The ratio of peak float (fp32) to double (fp64) performance on this device is 32:1. The kernel achieved 0% of this device's fp32 peak performance and 0% of its fp64 peak performance. See the for

® Roofline Analysis mode details on roofline analysis.

» Compute Workload Analysis g

Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per clock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization might limit the overall
performance.

Executed Ipc Elapsed [inst/cycle] 0.01 SM Busy [%] 0.17
Executed Ipc Active [inst/cycle] 0.01 Issue Slots Busy [%] 0.17
Issued Ipc Active [inst/cycle] 0.01

A\ Low Utilization All pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the and sections for further details. ®
» Memory Workload Analysis O

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth
between those units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy).

Memory Throughput [Gbyte/second)] 1.51 Mem Busy [%] 1.69
L1/TEX Hit Rate [%] 0 Max Bandwidth [%] 1.54
L2 Hit Rate [%] 80.88 Mem Pipes Busy [%] 0.26
» Scheduler Statistics O

Summary of the activity of the schedulers issuing instructions. Each scheduler maintains a pool of warps that it can issue instructions for. The upper bound of warps in the pool (Theoretical Warps) is limited by the launch configuration. On every
cycle each scheduler checks the state of the allocated warps in the pool (Active Warps). Active warps that are not stalled (Eligible Warps) are ready to issue their next instruction. From the set of eligible warps the scheduler selects a single warp
from which to issue one or more instructions (Issued Warp). On cycles with no eligible warps, the issue slot is skipped and no instruction is issued. Having many skipped issue slots indicates poor latency hiding.

Active Warps Per Scheduler [warp] 6.73 No Eligible [%] 99.83
Eligible Warps Per Scheduler [warp] 0.00 One or More Eligible [%] 0.17
Issued Warp Per Scheduler 0.00

Every scheduler is capable of issuing one instruction per cycle, but for this kernel each scheduler only issues an instruction every 605.9 cycles. This might leave hardware resources underutilized and may lead to
less optimal performance. Out of the maximum of 8 warps per scheduler, this kernel allocates an average of 6.73 active warps per scheduler, but only an average of 0.00 warps were eligible per cycle. Eligible warps
are the subset of active warps that are ready to issue their next instruction. Every cycle with no eligible warp results in no instruction being issued and the issue slot remains unused. To increase the number of
eligible warps, avoid possible load imbalances due to highly different execution durations per warp. Reducing stalls indicated on the and sections can help, too.

A\ Issue Slot Utilization

» Warp State Statistics O

Analysis of the states in which all warps spent cycles during the kernel execution. The warp states describe a warp's readiness or inability to issue its next instruction. The warp cycles per instruction define the latency between two consecutive
instructions. The higher the value, the more warp parallelism is required to hide this latency. For each warp state, the chart shows the average number of cycles spent in that state per issued instruction. Stalls are not always impacting the overall
performance nor are they completely avoidable. Only focus on stall reasons if the schedulers fail to issue every cycle. When executing a kernel with mixed library and user code, these metrics show the combined values.

Warp Cycles Per Issued Instruction [cycle] 407579 Avg. Active Threads Per Warp 32
Warp Cycles Per Executed Instruction [cycle] 412226 Avg. Not Predicated Off Threads Per Warp 28.80
On average, each warp of this kernel spends 2313.6 cycles being stalled waiting after an EXIT instruction for all outstanding memory instructions to complete so that the warp’s resources can be freed. This represents about ®

A\ drain 56.8% of the total average of 4075.8 cycles between issuing two instructions. A high number of stalls due to draining warps typically occurs when a lot of data is written to memory towards the end of a kernel. Make sure the
memory access patterns of these store operations are optimal for the target architecture and consider parallelized data reduction, if applicable.

On average, each warp of this kernel spends 1909.4 cycles being stalled waiting for the local/global instruction queue to be not full. This represents about 46.8% of the total average of 4075.8 cycles between issuing ®
A\ lg_throttle two instructions. Typically this stall occurs only when executing local or global memory instructions extremely frequently. If applicable, consider combining multiple lower-width memeory operations into fewer wider
memory operations and try interleaving memory operations and math instructions.

@® warpstall Checkthe section for the top stall locations in your source based on sampling data. The provides more details on each stall reason.

» Instruction Statistics o

Statistics of the executed low-level assembly instructions (SASS). The instruction mix provides insight into the types and frequency of the executed instructions. A narrow mix of instruction types implies a dependency on few instruction pipelines,
while others remain unused. Using multiple pipelines allows hiding latencies and enables parallel execution. Note that 'Instructions/Opcode’ and 'Executed Instructions' are measured differently and can diverge if cycles are spent in system calls.

Executed Instructions [inst] 303,156 Awvg. Executed Instructions Per Scheduler [inst] 2 105.25
Issued Instructions [inst] 306,612 Awvg. Issued Instructions Per Scheduler [inst] 2129.25
» Launch Statistics O

Summary of the configuration used to launch the kernel. The launch configuration defines the size of the kernel grid, the division of the grid into blocks, and the GPU resources needed to execute the kernel. Choosing an efficient launch configuration
maximizes device utilization.

Grid Size 7.579 Reqgisters Per Thread [register/thread] 16
Block Size 128 Static Shared Memory Per Block [byte/block] 0
Threads [thread)] 970,112 Dynamic Shared Memory Per Block [byte/block] 0
Waves Per SM 26.32 Driver Shared Memory Per Block [byte/block] 0
Function Cache Configuration cudaFuncCachePreferNone Shared Memory Configuration Size [Kbyte] 32.77
» Occupancy o

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware’s ability to process warps that is actively in use. Higher
occupancy does not always result in higher performance, however, low occupancy always reduces the ability to hide latencies, resulting in overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy
during execution typically indicates highly imbalanced workloads.

Theoretical Occupancy [%] 100 Block Limit Registers [block] 32
Theoretical Active Warps per SM [warp] 32 Block Limit Shared Mem [block] 16
Achieved Occupancy [%] 86.80 Block Limit Warps [block] 8
Achieved Active Warps Per SM [warp] 27.78 Block Limit SM [block] 16

This kernel’s theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (86.8%) can be the result of warp scheduling
£\ Occupancy Limiters overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the for more
details on optimizing occupancy.

» Source Counters : o

Source metrics, including branch efficiency and sampled warp stall reasons. Sampling Data metrics are periodically sampled over the kernel runtime. They indicate when warps were stalled and couldn't be scheduled. See the documentation for a
description of all stall reasons. Only focus on stalls if the schedulers fail to issue every cycle.

Branch Instructions [inst] 60,631 Branch Efficiency [%] 0

Branch Instructions Ratio 0.20 Awvg. Divergent Branches

