Detectnetv2 tfrecords error

Please provide the following information when requesting support.

• Hardware (T4)
• Network Type (Detectnet_v20
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)
Configuration of the TAO Toolkit Instance

task_group:
model:
dockers:
nvidia/tao/tao-toolkit:
5.0.0-tf2.11.0:
docker_registry: nvcr.io
tasks:
1. classification_tf2
2. efficientdet_tf2
5.0.0-tf1.15.5:
docker_registry: nvcr.io
tasks:
1. bpnet
2. classification_tf1
3. converter
4. detectnet_v2
5. dssd
6. efficientdet_tf1
7. faster_rcnn
8. fpenet
9. lprnet
10. mask_rcnn
11. multitask_classification
12. retinanet
13. ssd
14. unet
15. yolo_v3
16. yolo_v4
17. yolo_v4_tiny
5.2.0-pyt2.1.0:
docker_registry: nvcr.io
tasks:
1. action_recognition
2. centerpose
3. deformable_detr
4. dino
5. mal
6. ml_recog
7. ocdnet
8. ocrnet
9. optical_inspection
10. pointpillars
11. pose_classification
12. re_identification
13. visual_changenet
5.2.0-pyt1.14.0:
docker_registry: nvcr.io
tasks:
1. classification_pyt
2. segformer
dataset:
dockers:
nvidia/tao/tao-toolkit:
5.2.0-data-services:
docker_registry: nvcr.io
tasks:
1. augmentation
2. auto_label
3. annotations
4. analytics
deploy:
dockers:
nvidia/tao/tao-toolkit:
5.2.0-deploy:
docker_registry: nvcr.io
tasks:
1. visual_changenet
2. centerpose
3. classification_pyt
4. classification_tf1
5. classification_tf2
6. deformable_detr
7. detectnet_v2
8. dino
9. dssd
10. efficientdet_tf1
11. efficientdet_tf2
12. faster_rcnn
13. lprnet
14. mask_rcnn
15. ml_recog
16. multitask_classification
17. ocdnet
18. ocrnet
19. optical_inspection
20. retinanet
21. segformer
22. ssd
23. trtexec
24. unet
25. yolo_v3
26. yolo_v4
27. yolo_v4_tiny
format_version: 3.0
toolkit_version: 5.2.0
published_date: 12/06/2023
• Training spec file()
detectnet_v2_tfrecords_kitti_trainval.txt (302 Bytes)

• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)
!tao model detectnet_v2 dataset_convert
-d $SPECS_DIR/detectnet_v2_tfrecords_kitti_trainval.txt
-o $DATA_DOWNLOAD_DIR/tfrecords/kitti_trainval/kitti_trainval
-r $USER_EXPERIMENT_DIR/

2024-01-13 11:48:42,411 [TAO Toolkit] [INFO] root 160: Registry: [‘nvcr.io’]
2024-01-13 11:48:42,485 [TAO Toolkit] [INFO] nvidia_tao_cli.components.instance_handler.local_instance 361: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5
2024-01-13 11:48:42,499 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 301: Printing tty value True
2024-01-13 03:48:43.188617: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2024-01-13 03:48:43,242 [TAO Toolkit] [WARNING] tensorflow 40: Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
Using TensorFlow backend.
2024-01-13 03:48:44,965 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:45,008 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:45,012 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:46,917 [TAO Toolkit] [WARNING] matplotlib 500: Matplotlib created a temporary config/cache directory at /tmp/matplotlib-oq_eer2u because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.
2024-01-13 03:48:47,220 [TAO Toolkit] [INFO] matplotlib.font_manager 1633: generated new fontManager
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
Using TensorFlow backend.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:49,173 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:49,214 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:49,218 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 03:48:49,829 [TAO Toolkit] [INFO] root 2102: Starting Object Detection Dataset Convert.
2024-01-13 03:48:49,830 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.build_converter 87: Instantiating a kitti converter
2024-01-13 03:48:49,830 [TAO Toolkit] [INFO] root 2102: Instantiating a kitti converter
2024-01-13 03:48:49,830 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 71: Creating output directory /workspace/tao-experiments/Data/tfrecords/kitti_trainval
2024-01-13 03:48:49,830 [TAO Toolkit] [INFO] root 2102: Generating partitions
2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.kitti_converter_lib 176: Num images in
Train: 26 Val: 4
2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] root 2102: Num images in
Train: 26 Val: 4
2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.kitti_converter_lib 197: Validation data in partition 0. Hence, while choosing the validationset during training choose validation_fold 0.
2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] root 2102: Validation data in partition 0. Hence, while choosing the validationset during training choose validation_fold 0.
2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 0
2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 0
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py:181: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead.

2024-01-13 03:48:49,831 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py:181: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead.

2024-01-13 03:48:49,831 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 1
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 1
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 2
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 2
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 3
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 3
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 4
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 4
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 5
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 5
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 6
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 6
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 7
2024-01-13 03:48:49,832 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 7
2024-01-13 03:48:49,833 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 8
2024-01-13 03:48:49,833 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 8
2024-01-13 03:48:49,833 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 9
2024-01-13 03:48:49,833 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 9
2024-01-13 03:48:49,838 [TAO Toolkit] [INFO] root 2102: [Errno 2] No such file or directory: ‘/workspace/tao-experiments/Data/Train/Labels/00002.txt’
Traceback (most recent call last):
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/scripts/dataset_convert.py”, line 168, in
raise e
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/scripts/dataset_convert.py”, line 137, in
main()
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/scripts/dataset_convert.py”, line 132, in main
converter.convert()
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py”, line 86, in convert
object_count = self._write_partitions(partitions)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py”, line 141, in _write_partitions
shard_object_count = self._write_shard(shard, p, s)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py”, line 185, in _write_shard
example = self._create_example_proto(frame_id)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/kitti_converter_lib.py”, line 223, in _create_example_proto
self._add_targets(example, frame_id)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/kitti_converter_lib.py”, line 329, in _add_targets
with open(label_file) as lf:
FileNotFoundError: [Errno 2] No such file or directory: ‘/workspace/tao-experiments/Data/Train/Labels/00002.txt’

Execution status: FAIL
2024-01-13 11:48:57,468 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 363: Stopping container.

Creating a new directory for the output tfrecords dump.

print(“Converting Tfrecords for kitti trainval dataset”)
!mkdir -p $LOCAL_DATA_DIR/tfrecords && rm -rf $LOCAL_DATA_DIR/tfrecords/*
!tao detectnet_v2 dataset_convert
-d $SPECS_DIR/detectnet_v2_tfrecords_kitti_trainval.txt
-o $DATA_DOWNLOAD_DIR/tfrecords/kitti_trainval/kitti_trainval

error

Converting Tfrecords for kitti trainval dataset
usage: tao [-h] {list,stop,info,dataset,deploy,model} …
tao: error: invalid choice: ‘detectnet_v2’ (choose from ‘list’, ‘stop’, ‘info’, ‘dataset’, ‘deploy’, ‘model’)

2024-01-13 15:53:00,198 [TAO Toolkit] [INFO] root 160: Registry: [‘nvcr.io’]
2024-01-13 15:53:00,281 [TAO Toolkit] [INFO] nvidia_tao_cli.components.instance_handler.local_instance 361: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5
2024-01-13 15:53:00,296 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 301: Printing tty value True
2024-01-13 07:53:01.001492: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2024-01-13 07:53:01,053 [TAO Toolkit] [WARNING] tensorflow 40: Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
Using TensorFlow backend.
2024-01-13 07:53:02,725 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:02,766 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:02,771 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:04,683 [TAO Toolkit] [WARNING] matplotlib 500: Matplotlib created a temporary config/cache directory at /tmp/matplotlib-397l846s because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.
2024-01-13 07:53:04,992 [TAO Toolkit] [INFO] matplotlib.font_manager 1633: generated new fontManager
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
Using TensorFlow backend.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:06,917 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:06,957 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:06,961 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2024-01-13 07:53:07,580 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.common.logging.logging 197: Log file already exists at /workspace/tao-experiments/detectnet_v2/status.json
2024-01-13 07:53:07,580 [TAO Toolkit] [INFO] root 2102: Starting Object Detection Dataset Convert.
2024-01-13 07:53:07,581 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.build_converter 87: Instantiating a kitti converter
2024-01-13 07:53:07,581 [TAO Toolkit] [INFO] root 2102: Instantiating a kitti converter
2024-01-13 07:53:07,581 [TAO Toolkit] [INFO] root 2102: Generating partitions
2024-01-13 07:53:07,581 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.kitti_converter_lib 176: Num images in
Train: 26 Val: 4
2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] root 2102: Num images in
Train: 26 Val: 4
2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.kitti_converter_lib 197: Validation data in partition 0. Hence, while choosing the validationset during training choose validation_fold 0.
2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] root 2102: Validation data in partition 0. Hence, while choosing the validationset during training choose validation_fold 0.
2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 0
2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 0
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py:181: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead.

2024-01-13 07:53:07,582 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py:181: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead.

2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 1
2024-01-13 07:53:07,582 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 1
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 2
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 2
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 3
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 3
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 4
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 4
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 5
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 5
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 6
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 6
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 7
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 7
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 8
2024-01-13 07:53:07,583 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 8
2024-01-13 07:53:07,584 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 0, shard 9
2024-01-13 07:53:07,584 [TAO Toolkit] [INFO] root 2102: Writing partition 0, shard 9
2024-01-13 07:53:07,591 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 250:
Wrote the following numbers of objects:
b’locomotive’: 4

2024-01-13 07:53:07,591 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 0
2024-01-13 07:53:07,591 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 0
2024-01-13 07:53:07,592 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 1
2024-01-13 07:53:07,592 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 1
2024-01-13 07:53:07,593 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 2
2024-01-13 07:53:07,593 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 2
2024-01-13 07:53:07,594 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 3
2024-01-13 07:53:07,594 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 3
2024-01-13 07:53:07,595 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 4
2024-01-13 07:53:07,595 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 4
2024-01-13 07:53:07,596 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 5
2024-01-13 07:53:07,596 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 5
2024-01-13 07:53:07,597 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 6
2024-01-13 07:53:07,597 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 6
2024-01-13 07:53:07,598 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 7
2024-01-13 07:53:07,598 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 7
2024-01-13 07:53:07,599 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 8
2024-01-13 07:53:07,599 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 8
2024-01-13 07:53:07,600 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.detectnet_v2.dataio.dataset_converter_lib 166: Writing partition 1, shard 9
2024-01-13 07:53:07,600 [TAO Toolkit] [INFO] root 2102: Writing partition 1, shard 9
2024-01-13 07:53:07,602 [TAO Toolkit] [INFO] root 2102: Ground truth kitti labels should have only 15 fields.
Traceback (most recent call last):
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/scripts/dataset_convert.py”, line 168, in
raise e
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/scripts/dataset_convert.py”, line 137, in
main()
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/scripts/dataset_convert.py”, line 132, in main
converter.convert()
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py”, line 86, in convert
object_count = self._write_partitions(partitions)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py”, line 141, in _write_partitions
shard_object_count = self._write_shard(shard, p, s)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/dataset_converter_lib.py”, line 185, in _write_shard
example = self._create_example_proto(frame_id)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/kitti_converter_lib.py”, line 223, in _create_example_proto
self._add_targets(example, frame_id)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/detectnet_v2/dataio/kitti_converter_lib.py”, line 337, in _add_targets
assert len(label) == 15, ‘Ground truth kitti labels should have only 15 fields.’
AssertionError: Ground truth kitti labels should have only 15 fields.

Execution status: FAIL
2024-01-13 15:53:14,328 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 363: Stopping container.

The code:
!tao model detectnet_v2 dataset_convert
-d $SPECS_DIR/detectnet_v2_tfrecords_kitti_trainval.txt
-o $DATA_DOWNLOAD_DIR/tfrecords/kitti_trainval/kitti_trainval
-r $USER_EXPERIMENT_DIR/

Label file
00001.txt (92 Bytes)

There is no update from you for a period, assuming this is not an issue anymore. Hence we are closing this topic. If need further support, please open a new one. Thanks

Please double check all the label files.
Make sure each line has only 15 fields.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.