I managed to train a custom detection model via jetson-inference, but I wonder, is there any possible way I can get any information or statistics for the performance of the custom model? Such as, accuracy, max fps, average confidence or etc.
I noticed the “eval_ssd.py” program inside jetson-inference, but I do not have any idea what it is for and how to use it. However, I suspect it is for trained model performance evaluation.
Then you can get some mAP score with your validation dataset by applying the inference script like run_ssd_example.py.
And if you deploy the model with live camera (streaming data), the fps will show on the window automatically.
I recommend you to follow the guide provided in the link below first. Tutorials video also have been included there. I think informations there able to help you.
Actualmente el problema que tengo es que estoy generando una base de datos en labelme en la que etiqueté algunas imagenes, posteriormente la transformé a formato VOC en los que se crean archivos .xml para cada imágen, sin embargo en los ejemplos observados se tienen archivos .csv.