Facial Landmarks NVIDIA

Hello, I am working on Jetson AGX Xavier, using deepstream-5.0
I am probing the data from the secondary of the facial landmarks.
However, I am getting fuzzy output. The output is really small. Here’s an example of the output:
[[ 0.3544922 1.0419922 ]
[-0.86279297 0.41308594]
[ 0.70654297 0.6381836 ]
[ 1.5234375 0.5991211 ]
[ 0.29882812 -1.5205078 ]
[ 1.2011719 -0.67871094]
[-0.38964844 2.3886719 ]
[ 1.2324219 -0.32421875]
[ 1.4072266 -0.8071289 ]
[-1.4365234 -2.0683594 ]
[-2.3027344 -0.7402344 ]
[ 0.5625 -0.5751953 ]
[-0.3486328 -0.6738281 ]
[ 1.0292969 -1.015625 ]
[ 0.36108398 0.18859863]
[-0.49365234 -1.1875 ]
[ 1.8046875 -0.42871094]
[ 2.0566406 0.5126953 ]
[-1.9404297 0.29516602]
[-1.171875 0.6591797 ]
[-0.73095703 -0.44091797]
[-0.26708984 -0.7993164 ]
[ 0.6123047 -2.2578125 ]
[-0.9169922 0.8725586 ]
[ 1.0371094 0.01264954]
[ 0.6748047 0.71240234]
[ 0.03775024 -0.7758789 ]
[ 1.3359375 1.0849609 ]
[ 1.4960938 0.43115234]
[-0.7919922 -1.2880859 ]
[-1.015625 1.2324219 ]
[ 2.0234375 1.9335938 ]
[-0.15686035 0.9121094 ]
[-1.9501953 1.0009766 ]
[ 0.19909668 0.76416016]
[ 0.9238281 -0.86083984]
[ 1.0205078 -0.7988281 ]
[ 0.5961914 -0.43945312]
[-0.17602539 -0.87109375]
[-0.03256226 -0.9404297 ]
[ 0.54345703 2.1933594 ]
[-1.1660156 -1.0751953 ]
[ 1.4921875 0.35913086]
[-0.09942627 -0.5527344 ]
[ 0.18432617 -0.453125 ]
[-0.21533203 2.5839844 ]
[ 1.9882812 0.22045898]
[-1.1152344 2.2246094 ]
[-0.6870117 1.1054688 ]
[-2.8828125 0.9609375 ]
[-1.5693359 -0.18920898]
[ 0.37109375 1.4570312 ]
[ 2.6308594 -1.1152344 ]
[ 0.2705078 0.03457642]
[ 0.07250977 0.10241699]
[-0.7832031 1.5634766 ]
[-0.28271484 1.0146484 ]
[-2.1464844 -0.82470703]
[ 0.58740234 0.3322754 ]
[ 1.9140625 -0.37646484]
[-0.5810547 0.5288086 ]
[ 1.5693359 -1.4111328 ]
[ 0.7001953 1.5712891 ]
[-0.5151367 -0.16992188]
[ 0.22631836 1.0009766 ]
[-0.93066406 0.5048828 ]
[ 0.7626953 0.55371094]
[ 1.7714844 0.3876953 ]
[ 0.27929688 -1.6728516 ]
[ 1.2871094 -0.7392578 ]
[-0.38378906 2.3378906 ]
[ 1.1855469 -0.6435547 ]
[ 1.4267578 -0.7705078 ]
[-1.5087891 -2.0585938 ]
[-2.2070312 -0.8276367 ]
[ 0.59277344 -0.8417969 ]
[-0.42797852 -0.5151367 ]
[ 1.0087891 -1.3388672 ]
[ 0.17407227 0.1583252 ]
[-0.41210938 -1.015625 ]]

Is there a way to solve this issue?

Please check the preprocess of your model and the nvinfer configs for the model.

I am generating the output, the 80 facial landmarks in the secondary.
However, I was checking the following link:

There’s a parameter called num_keypoints to be specified. What are the other specs to be specified in the config file?
I am stuck with it because there isn’t any documentation about the secondary in the drowsiness model.

I think num_keypoints is the item from spec file which is for TLT model training, you can create a new topic in TLT forum for more specific info.
If you want to deploy the model to deepstream, currently we only support standard dectction, that means we only can generate bbox in the post parser. If you think that cannot meet your requirement, then you can try to attach the raw tensor to the meta data, you can refer deepstream_infer_tensor_meta_test.cpp