Hi,
I’m trying to Fine-tuning the Qwen/Qwen3-VL-30B-A3B-Instruct-FP8 model with a dataset I created.
To do this, I ran the following command on my DGX Spark:
$ docker run --gpus all -it --rm -v $HOME/.cache/huggingface:/root/.cache/huggingface -v ${PWD}:/workspace -e HF_TOKEN=### -w /workspace nvcr.io/nvidia/pytorch:25.09-py3
Then, in the container:
$ pip install transformers accelerate bitsandbytes
$ pip install peft datasets Pillow
$ pip install --upgrade transformers peft datasets
When I run my training script, I’m getting the following error:
— Démarrage de la Préparation —
[Étape 1/4] 📦 Chargement du tokenizer et du modèle de base… → Le modèle Qwen/Qwen3-VL-30B-A3B-Instruct-FP8 va être chargé. → Si le modèle n’est pas en cache, le téléchargement (environ 70 Go) va commencer ici. → Attendez que les logs de chargement des ‘checkpoint shards’ apparaissent.torch_dtype is deprecated! Use dtype instead!Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 120.87it/s]Some weights of Qwen3VLMoeModel were not initialized from the model checkpoint at Qwen/Qwen3-VL-30B-A3B-Instruct-FP8 and are newly initialized: [‘language_model.embed_tokens.weight’, ‘language_model.layers.0.input_layernorm.weight’, ‘language_model.layers.0.mlp.experts.down_proj’, ‘language_model.layers.0.mlp.experts.gate_up_proj’, ‘language_model.layers.0.mlp.gate.weight’, ‘language_model.layers.0.post_attention_layernorm.weight’, ‘language_model.layers.0.self_attn.k_norm.weight’, ‘language_model.layers.0.self_attn.k_proj.weight’, ‘language_model.layers.0.self_attn.o_proj.weight’, ‘language_model.layers.0.self_attn.q_norm.weight’, ‘language_model.layers.0.self_attn.q_proj.weight’, ‘language_model.layers.0.self_attn.v_proj.weight’, ‘language_model.layers.1.input_layernorm.weight’, ‘language_model.layers.1.mlp.experts.down_proj’, ‘language_model.layers.1.mlp.experts.gate_up_proj’, ‘language_model.layers.1.mlp.gate.weight’, ‘language_model.layers.1.post_attention_layernorm.weight’, ‘language_model.layers.1.self_attn.k_norm.weight’, ‘language_model.layers.1.self_attn.k_proj.weight’, ‘language_model.layers.1.self_attn.o_proj.weight’, ‘language_model.layers.1.self_attn.q_norm.weight’, ‘language_model.layers.1.self_attn.q_proj.weight’, ‘language_model.layers.1.self_attn.v_proj.weight’, ‘language_model.layers.10.input_layernorm.weight’, ‘language_model.layers.10.mlp.experts.down_proj’, ‘language_model.layers.10.mlp.experts.gate_up_proj’, ‘language_model.layers.10.mlp.gate.weight’, ‘language_model.layers.10.post_attention_layernorm.weight’, ‘language_model.layers.10.self_attn.k_norm.weight’, ‘language_model.layers.10.self_attn.k_proj.weight’, ‘language_model.layers.10.self_attn.o_proj.weight’, ‘language_model.layers.10.self_attn.q_norm.weight’, ‘language_model.layers.10.self_attn.q_proj.weight’, ‘language_model.layers.10.self_attn.v_proj.weight’, ‘language_model.layers.11.input_layernorm.weight’, ‘language_model.layers.11.mlp.experts.down_proj’, ‘language_model.layers.11.mlp.experts.gate_up_proj’, ‘language_model.layers.11.mlp.gate.weight’, ‘language_model.layers.11.post_attention_layernorm.weight’, ‘language_model.layers.11.self_attn.k_norm.weight’, ‘language_model.layers.11.self_attn.k_proj.weight’, ‘language_model.layers.11.self_attn.o_proj.weight’, ‘language_model.layers.11.self_attn.q_norm.weight’, ‘language_model.layers.11.self_attn.q_proj.weight’, ‘language_model.layers.11.self_attn.v_proj.weight’, ‘language_model.layers.12.input_layernorm.weight’, ‘language_model.layers.12.mlp.experts.down_proj’, ‘language_model.layers.12.mlp.experts.gate_up_proj’, ‘language_model.layers.12.mlp.gate.weight’, ‘language_model.layers.12.post_attention_layernorm.weight’, ‘language_model.layers.12.self_attn.k_norm.weight’, ‘language_model.layers.12.self_attn.k_proj.weight’, ‘language_model.layers.12.self_attn.o_proj.weight’, ‘language_model.layers.12.self_attn.q_norm.weight’, ‘language_model.layers.12.self_attn.q_proj.weight’, ‘language_model.layers.12.self_attn.v_proj.weight’, ‘language_model.layers.13.input_layernorm.weight’, ‘language_model.layers.13.mlp.experts.down_proj’, ‘language_model.layers.13.mlp.experts.gate_up_proj’, ‘language_model.layers.13.mlp.gate.weight’, ‘language_model.layers.13.post_attention_layernorm.weight’, ‘language_model.layers.13.self_attn.k_norm.weight’, ‘language_model.layers.13.self_attn.k_proj.weight’, ‘language_model.layers.13.self_attn.o_proj.weight’, ‘language_model.layers.13.self_attn.q_norm.weight’, ‘language_model.layers.13.self_attn.q_proj.weight’, ‘language_model.layers.13.self_attn.v_proj.weight’, ‘language_model.layers.14.input_layernorm.weight’, ‘language_model.layers.14.mlp.experts.down_proj’, ‘language_model.layers.14.mlp.experts.gate_up_proj’, ‘language_model.layers.14.mlp.gate.weight’, ‘language_model.layers.14.post_attention_layernorm.weight’, ‘language_model.layers.14.self_attn.k_norm.weight’, ‘language_model.layers.14.self_attn.k_proj.weight’, ‘language_model.layers.14.self_attn.o_proj.weight’, ‘language_model.layers.14.self_attn.q_norm.weight’, ‘language_model.layers.14.self_attn.q_proj.weight’, ‘language_model.layers.14.self_attn.v_proj.weight’, ‘language_model.layers.15.input_layernorm.weight’, ‘language_model.layers.15.mlp.experts.down_proj’, ‘language_model.layers.15.mlp.experts.gate_up_proj’, ‘language_model.layers.15.mlp.gate.weight’, ‘language_model.layers.15.post_attention_layernorm.weight’, ‘language_model.layers.15.self_attn.k_norm.weight’, ‘language_model.layers.15.self_attn.k_proj.weight’, ‘language_model.layers.15.self_attn.o_proj.weight’, ‘language_model.layers.15.self_attn.q_norm.weight’, ‘language_model.layers.15.self_attn.q_proj.weight’, ‘language_model.layers.15.self_attn.v_proj.weight’, ‘language_model.layers.16.input_layernorm.weight’, ‘language_model.layers.16.mlp.experts.down_proj’, ‘language_model.layers.16.mlp.experts.gate_up_proj’, ‘language_model.layers.16.mlp.gate.weight’, ‘language_model.layers.16.post_attention_layernorm.weight’, ‘language_model.layers.16.self_attn.k_norm.weight’, ‘language_model.layers.16.self_attn.k_proj.weight’, ‘language_model.layers.16.self_attn.o_proj.weight’, ‘language_model.layers.16.self_attn.q_norm.weight’, ‘language_model.layers.16.self_attn.q_proj.weight’, ‘language_model.layers.16.self_attn.v_proj.weight’, ‘language_model.layers.17.input_layernorm.weight’, ‘language_model.layers.17.mlp.experts.down_proj’, ‘language_model.layers.17.mlp.experts.gate_up_proj’, ‘language_model.layers.17.mlp.gate.weight’, ‘language_model.layers.17.post_attention_layernorm.weight’, ‘language_model.layers.17.self_attn.k_norm.weight’, ‘language_model.layers.17.self_attn.k_proj.weight’, ‘language_model.layers.17.self_attn.o_proj.weight’, ‘language_model.layers.17.self_attn.q_norm.weight’, ‘language_model.layers.17.self_attn.q_proj.weight’, ‘language_model.layers.17.self_attn.v_proj.weight’, ‘language_model.layers.18.input_layernorm.weight’, ‘language_model.layers.18.mlp.experts.down_proj’, ‘language_model.layers.18.mlp.experts.gate_up_proj’, ‘language_model.layers.18.mlp.gate.weight’, ‘language_model.layers.18.post_attention_layernorm.weight’, ‘language_model.layers.18.self_attn.k_norm.weight’, ‘language_model.layers.18.self_attn.k_proj.weight’, ‘language_model.layers.18.self_attn.o_proj.weight’, ‘language_model.layers.18.self_attn.q_norm.weight’, ‘language_model.layers.18.self_attn.q_proj.weight’, ‘language_model.layers.18.self_attn.v_proj.weight’, ‘language_model.layers.19.input_layernorm.weight’, ‘language_model.layers.19.mlp.experts.down_proj’, ‘language_model.layers.19.mlp.experts.gate_up_proj’, ‘language_model.layers.19.mlp.gate.weight’, ‘language_model.layers.19.post_attention_layernorm.weight’, ‘language_model.layers.19.self_attn.k_norm.weight’, ‘language_model.layers.19.self_attn.k_proj.weight’, ‘language_model.layers.19.self_attn.o_proj.weight’, ‘language_model.layers.19.self_attn.q_norm.weight’, ‘language_model.layers.19.self_attn.q_proj.weight’, ‘language_model.layers.19.self_attn.v_proj.weight’, ‘language_model.layers.2.input_layernorm.weight’, ‘language_model.layers.2.mlp.experts.down_proj’, ‘language_model.layers.2.mlp.experts.gate_up_proj’, ‘language_model.layers.2.mlp.gate.weight’, ‘language_model.layers.2.post_attention_layernorm.weight’, ‘language_model.layers.2.self_attn.k_norm.weight’, ‘language_model.layers.2.self_attn.k_proj.weight’, ‘language_model.layers.2.self_attn.o_proj.weight’, ‘language_model.layers.2.self_attn.q_norm.weight’, ‘language_model.layers.2.self_attn.q_proj.weight’, ‘language_model.layers.2.self_attn.v_proj.weight’, ‘language_model.layers.20.input_layernorm.weight’, ‘language_model.layers.20.mlp.experts.down_proj’, ‘language_model.layers.20.mlp.experts.gate_up_proj’, ‘language_model.layers.20.mlp.gate.weight’, ‘language_model.layers.20.post_attention_layernorm.weight’, ‘language_model.layers.20.self_attn.k_norm.weight’, ‘language_model.layers.20.self_attn.k_proj.weight’, ‘language_model.layers.20.self_attn.o_proj.weight’, ‘language_model.layers.20.self_attn.q_norm.weight’, ‘language_model.layers.20.self_attn.q_proj.weight’, ‘language_model.layers.20.self_attn.v_proj.weight’, ‘language_model.layers.21.input_layernorm.weight’, ‘language_model.layers.21.mlp.experts.down_proj’, ‘language_model.layers.21.mlp.experts.gate_up_proj’, ‘language_model.layers.21.mlp.gate.weight’, ‘language_model.layers.21.post_attention_layernorm.weight’, ‘language_model.layers.21.self_attn.k_norm.weight’, ‘language_model.layers.21.self_attn.k_proj.weight’, ‘language_model.layers.21.self_attn.o_proj.weight’, ‘language_model.layers.21.self_attn.q_norm.weight’, ‘language_model.layers.21.self_attn.q_proj.weight’, ‘language_model.layers.21.self_attn.v_proj.weight’, ‘language_model.layers.22.input_layernorm.weight’, ‘language_model.layers.22.mlp.experts.down_proj’, ‘language_model.layers.22.mlp.experts.gate_up_proj’, ‘language_model.layers.22.mlp.gate.weight’, ‘language_model.layers.22.post_attention_layernorm.weight’, ‘language_model.layers.22.self_attn.k_norm.weight’, ‘language_model.layers.22.self_attn.k_proj.weight’, ‘language_model.layers.22.self_attn.o_proj.weight’, ‘language_model.layers.22.self_attn.q_norm.weight’, ‘language_model.layers.22.self_attn.q_proj.weight’, ‘language_model.layers.22.self_attn.v_proj.weight’, ‘language_model.layers.23.input_layernorm.weight’, ‘language_model.layers.23.mlp.experts.down_proj’, ‘language_model.layers.23.mlp.experts.gate_up_proj’, ‘language_model.layers.23.mlp.gate.weight’, ‘language_model.layers.23.post_attention_layernorm.weight’, ‘language_model.layers.23.self_attn.k_norm.weight’, ‘language_model.layers.23.self_attn.k_proj.weight’, ‘language_model.layers.23.self_attn.o_proj.weight’, ‘language_model.layers.23.self_attn.q_norm.weight’, ‘language_model.layers.23.self_attn.q_proj.weight’, ‘language_model.layers.23.self_attn.v_proj.weight’, ‘language_model.layers.24.input_layernorm.weight’, ‘language_model.layers.24.mlp.experts.down_proj’, ‘language_model.layers.24.mlp.experts.gate_up_proj’, ‘language_model.layers.24.mlp.gate.weight’, ‘language_model.layers.24.post_attention_layernorm.weight’, ‘language_model.layers.24.self_attn.k_norm.weight’, ‘language_model.layers.24.self_attn.k_proj.weight’, ‘language_model.layers.24.self_attn.o_proj.weight’, ‘language_model.layers.24.self_attn.q_norm.weight’, ‘language_model.layers.24.self_attn.q_proj.weight’, ‘language_model.layers.24.self_attn.v_proj.weight’, ‘language_model.layers.25.input_layernorm.weight’, ‘language_model.layers.25.mlp.experts.down_proj’, ‘language_model.layers.25.mlp.experts.gate_up_proj’, ‘language_model.layers.25.mlp.gate.weight’, ‘language_model.layers.25.post_attention_layernorm.weight’, ‘language_model.layers.25.self_attn.k_norm.weight’, ‘language_model.layers.25.self_attn.k_proj.weight’, ‘language_model.layers.25.self_attn.o_proj.weight’, ‘language_model.layers.25.self_attn.q_norm.weight’, ‘language_model.layers.25.self_attn.q_proj.weight’, ‘language_model.layers.25.self_attn.v_proj.weight’, ‘language_model.layers.26.input_layernorm.weight’, ‘language_model.layers.26.mlp.experts.down_proj’, ‘language_model.layers.26.mlp.experts.gate_up_proj’, ‘language_model.layers.26.mlp.gate.weight’, ‘language_model.layers.26.post_attention_layernorm.weight’, ‘language_model.layers.26.self_attn.k_norm.weight’, ‘language_model.layers.26.self_attn.k_proj.weight’, ‘language_model.layers.26.self_attn.o_proj.weight’, ‘language_model.layers.26.self_attn.q_norm.weight’, ‘language_model.layers.26.self_attn.q_proj.weight’, ‘language_model.layers.26.self_attn.v_proj.weight’, ‘language_model.layers.27.input_layernorm.weight’, ‘language_model.layers.27.mlp.experts.down_proj’, ‘language_model.layers.27.mlp.experts.gate_up_proj’, ‘language_model.layers.27.mlp.gate.weight’, ‘language_model.layers.27.post_attention_layernorm.weight’, ‘language_model.layers.27.self_attn.k_norm.weight’, ‘language_model.layers.27.self_attn.k_proj.weight’, ‘language_model.layers.27.self_attn.o_proj.weight’, ‘language_model.layers.27.self_attn.q_norm.weight’, ‘language_model.layers.27.self_attn.q_proj.weight’, ‘language_model.layers.27.self_attn.v_proj.weight’, ‘language_model.layers.28.input_layernorm.weight’, ‘language_model.layers.28.mlp.experts.down_proj’, ‘language_model.layers.28.mlp.experts.gate_up_proj’, ‘language_model.layers.28.mlp.gate.weight’, ‘language_model.layers.28.post_attention_layernorm.weight’, ‘language_model.layers.28.self_attn.k_norm.weight’, ‘language_model.layers.28.self_attn.k_proj.weight’, ‘language_model.layers.28.self_attn.o_proj.weight’, ‘language_model.layers.28.self_attn.q_norm.weight’, ‘language_model.layers.28.self_attn.q_proj.weight’, ‘language_model.layers.28.self_attn.v_proj.weight’, ‘language_model.layers.29.input_layernorm.weight’, ‘language_model.layers.29.mlp.experts.down_proj’, ‘language_model.layers.29.mlp.experts.gate_up_proj’, ‘language_model.layers.29.mlp.gate.weight’, ‘language_model.layers.29.post_attention_layernorm.weight’, ‘language_model.layers.29.self_attn.k_norm.weight’, ‘language_model.layers.29.self_attn.k_proj.weight’, ‘language_model.layers.29.self_attn.o_proj.weight’, ‘language_model.layers.29.self_attn.q_norm.weight’, ‘language_model.layers.29.self_attn.q_proj.weight’, ‘language_model.layers.29.self_attn.v_proj.weight’, ‘language_model.layers.3.input_layernorm.weight’, ‘language_model.layers.3.mlp.experts.down_proj’, ‘language_model.layers.3.mlp.experts.gate_up_proj’, ‘language_model.layers.3.mlp.gate.weight’, ‘language_model.layers.3.post_attention_layernorm.weight’, ‘language_model.layers.3.self_attn.k_norm.weight’, ‘language_model.layers.3.self_attn.k_proj.weight’, ‘language_model.layers.3.self_attn.o_proj.weight’, ‘language_model.layers.3.self_attn.q_norm.weight’, ‘language_model.layers.3.self_attn.q_proj.weight’, ‘language_model.layers.3.self_attn.v_proj.weight’, ‘language_model.layers.30.input_layernorm.weight’, ‘language_model.layers.30.mlp.experts.down_proj’, ‘language_model.layers.30.mlp.experts.gate_up_proj’, ‘language_model.layers.30.mlp.gate.weight’, ‘language_model.layers.30.post_attention_layernorm.weight’, ‘language_model.layers.30.self_attn.k_norm.weight’, ‘language_model.layers.30.self_attn.k_proj.weight’, ‘language_model.layers.30.self_attn.o_proj.weight’, ‘language_model.layers.30.self_attn.q_norm.weight’, ‘language_model.layers.30.self_attn.q_proj.weight’, ‘language_model.layers.30.self_attn.v_proj.weight’, ‘language_model.layers.31.input_layernorm.weight’, ‘language_model.layers.31.mlp.experts.down_proj’, ‘language_model.layers.31.mlp.experts.gate_up_proj’, ‘language_model.layers.31.mlp.gate.weight’, ‘language_model.layers.31.post_attention_layernorm.weight’, ‘language_model.layers.31.self_attn.k_norm.weight’, ‘language_model.layers.31.self_attn.k_proj.weight’, ‘language_model.layers.31.self_attn.o_proj.weight’, ‘language_model.layers.31.self_attn.q_norm.weight’, ‘language_model.layers.31.self_attn.q_proj.weight’, ‘language_model.layers.31.self_attn.v_proj.weight’, ‘language_model.layers.32.input_layernorm.weight’, ‘language_model.layers.32.mlp.experts.down_proj’, ‘language_model.layers.32.mlp.experts.gate_up_proj’, ‘language_model.layers.32.mlp.gate.weight’, ‘language_model.layers.32.post_attention_layernorm.weight’, ‘language_model.layers.32.self_attn.k_norm.weight’, ‘language_model.layers.32.self_attn.k_proj.weight’, ‘language_model.layers.32.self_attn.o_proj.weight’, ‘language_model.layers.32.self_attn.q_norm.weight’, ‘language_model.layers.32.self_attn.q_proj.weight’, ‘language_model.layers.32.self_attn.v_proj.weight’, ‘language_model.layers.33.input_layernorm.weight’, ‘language_model.layers.33.mlp.experts.down_proj’, ‘language_model.layers.33.mlp.experts.gate_up_proj’, ‘language_model.layers.33.mlp.gate.weight’, ‘language_model.layers.33.post_attention_layernorm.weight’, ‘language_model.layers.33.self_attn.k_norm.weight’, ‘language_model.layers.33.self_attn.k_proj.weight’, ‘language_model.layers.33.self_attn.o_proj.weight’, ‘language_model.layers.33.self_attn.q_norm.weight’, ‘language_model.layers.33.self_attn.q_proj.weight’, ‘language_model.layers.33.self_attn.v_proj.weight’, ‘language_model.layers.34.input_layernorm.weight’, ‘language_model.layers.34.mlp.experts.down_proj’, ‘language_model.layers.34.mlp.experts.gate_up_proj’, ‘language_model.layers.34.mlp.gate.weight’, ‘language_model.layers.34.post_attention_layernorm.weight’, ‘language_model.layers.34.self_attn.k_norm.weight’, ‘language_model.layers.34.self_attn.k_proj.weight’, ‘language_model.layers.34.self_attn.o_proj.weight’, ‘language_model.layers.34.self_attn.q_norm.weight’, ‘language_model.layers.34.self_attn.q_proj.weight’, ‘language_model.layers.34.self_attn.v_proj.weight’, ‘language_model.layers.35.input_layernorm.weight’, ‘language_model.layers.35.mlp.experts.down_proj’, ‘language_model.layers.35.mlp.experts.gate_up_proj’, ‘language_model.layers.35.mlp.gate.weight’, ‘language_model.layers.35.post_attention_layernorm.weight’, ‘language_model.layers.35.self_attn.k_norm.weight’, ‘language_model.layers.35.self_attn.k_proj.weight’, ‘language_model.layers.35.self_attn.o_proj.weight’, ‘language_model.layers.35.self_attn.q_norm.weight’, ‘language_model.layers.35.self_attn.q_proj.weight’, ‘language_model.layers.35.self_attn.v_proj.weight’, ‘language_model.layers.36.input_layernorm.weight’, ‘language_model.layers.36.mlp.experts.down_proj’, ‘language_model.layers.36.mlp.experts.gate_up_proj’, ‘language_model.layers.36.mlp.gate.weight’, ‘language_model.layers.36.post_attention_layernorm.weight’, ‘language_model.layers.36.self_attn.k_norm.weight’, ‘language_model.layers.36.self_attn.k_proj.weight’, ‘language_model.layers.36.self_attn.o_proj.weight’, ‘language_model.layers.36.self_attn.q_norm.weight’, ‘language_model.layers.36.self_attn.q_proj.weight’, ‘language_model.layers.36.self_attn.v_proj.weight’, ‘language_model.layers.37.input_layernorm.weight’, ‘language_model.layers.37.mlp.experts.down_proj’, ‘language_model.layers.37.mlp.experts.gate_up_proj’, ‘language_model.layers.37.mlp.gate.weight’, ‘language_model.layers.37.post_attention_layernorm.weight’, ‘language_model.layers.37.self_attn.k_norm.weight’, ‘language_model.layers.37.self_attn.k_proj.weight’, ‘language_model.layers.37.self_attn.o_proj.weight’, ‘language_model.layers.37.self_attn.q_norm.weight’, ‘language_model.layers.37.self_attn.q_proj.weight’, ‘language_model.layers.37.self_attn.v_proj.weight’, ‘language_model.layers.38.input_layernorm.weight’, ‘language_model.layers.38.mlp.experts.down_proj’, ‘language_model.layers.38.mlp.experts.gate_up_proj’, ‘language_model.layers.38.mlp.gate.weight’, ‘language_model.layers.38.post_attention_layernorm.weight’, ‘language_model.layers.38.self_attn.k_norm.weight’, ‘language_model.layers.38.self_attn.k_proj.weight’, ‘language_model.layers.38.self_attn.o_proj.weight’, ‘language_model.layers.38.self_attn.q_norm.weight’, ‘language_model.layers.38.self_attn.q_proj.weight’, ‘language_model.layers.38.self_attn.v_proj.weight’, ‘language_model.layers.39.input_layernorm.weight’, ‘language_model.layers.39.mlp.experts.down_proj’, ‘language_model.layers.39.mlp.experts.gate_up_proj’, ‘language_model.layers.39.mlp.gate.weight’, ‘language_model.layers.39.post_attention_layernorm.weight’, ‘language_model.layers.39.self_attn.k_norm.weight’, ‘language_model.layers.39.self_attn.k_proj.weight’, ‘language_model.layers.39.self_attn.o_proj.weight’, ‘language_model.layers.39.self_attn.q_norm.weight’, ‘language_model.layers.39.self_attn.q_proj.weight’, ‘language_model.layers.39.self_attn.v_proj.weight’, ‘language_model.layers.4.input_layernorm.weight’, ‘language_model.layers.4.mlp.experts.down_proj’, ‘language_model.layers.4.mlp.experts.gate_up_proj’, ‘language_model.layers.4.mlp.gate.weight’, ‘language_model.layers.4.post_attention_layernorm.weight’, ‘language_model.layers.4.self_attn.k_norm.weight’, ‘language_model.layers.4.self_attn.k_proj.weight’, ‘language_model.layers.4.self_attn.o_proj.weight’, ‘language_model.layers.4.self_attn.q_norm.weight’, ‘language_model.layers.4.self_attn.q_proj.weight’, ‘language_model.layers.4.self_attn.v_proj.weight’, ‘language_model.layers.40.input_layernorm.weight’, ‘language_model.layers.40.mlp.experts.down_proj’, ‘language_model.layers.40.mlp.experts.gate_up_proj’, ‘language_model.layers.40.mlp.gate.weight’, ‘language_model.layers.40.post_attention_layernorm.weight’, ‘language_model.layers.40.self_attn.k_norm.weight’, ‘language_model.layers.40.self_attn.k_proj.weight’, ‘language_model.layers.40.self_attn.o_proj.weight’, ‘language_model.layers.40.self_attn.q_norm.weight’, ‘language_model.layers.40.self_attn.q_proj.weight’, ‘language_model.layers.40.self_attn.v_proj.weight’, ‘language_model.layers.41.input_layernorm.weight’, ‘language_model.layers.41.mlp.experts.down_proj’, ‘language_model.layers.41.mlp.experts.gate_up_proj’, ‘language_model.layers.41.mlp.gate.weight’, ‘language_model.layers.41.post_attention_layernorm.weight’, ‘language_model.layers.41.self_attn.k_norm.weight’, ‘language_model.layers.41.self_attn.k_proj.weight’, ‘language_model.layers.41.self_attn.o_proj.weight’, ‘language_model.layers.41.self_attn.q_norm.weight’, ‘language_model.layers.41.self_attn.q_proj.weight’, ‘language_model.layers.41.self_attn.v_proj.weight’, ‘language_model.layers.42.input_layernorm.weight’, ‘language_model.layers.42.mlp.experts.down_proj’, ‘language_model.layers.42.mlp.experts.gate_up_proj’, ‘language_model.layers.42.mlp.gate.weight’, ‘language_model.layers.42.post_attention_layernorm.weight’, ‘language_model.layers.42.self_attn.k_norm.weight’, ‘language_model.layers.42.self_attn.k_proj.weight’, ‘language_model.layers.42.self_attn.o_proj.weight’, ‘language_model.layers.42.self_attn.q_norm.weight’, ‘language_model.layers.42.self_attn.q_proj.weight’, ‘language_model.layers.42.self_attn.v_proj.weight’, ‘language_model.layers.43.input_layernorm.weight’, ‘language_model.layers.43.mlp.experts.down_proj’, ‘language_model.layers.43.mlp.experts.gate_up_proj’, ‘language_model.layers.43.mlp.gate.weight’, ‘language_model.layers.43.post_attention_layernorm.weight’, ‘language_model.layers.43.self_attn.k_norm.weight’, ‘language_model.layers.43.self_attn.k_proj.weight’, ‘language_model.layers.43.self_attn.o_proj.weight’, ‘language_model.layers.43.self_attn.q_norm.weight’, ‘language_model.layers.43.self_attn.q_proj.weight’, ‘language_model.layers.43.self_attn.v_proj.weight’, ‘language_model.layers.44.input_layernorm.weight’, ‘language_model.layers.44.mlp.experts.down_proj’, ‘language_model.layers.44.mlp.experts.gate_up_proj’, ‘language_model.layers.44.mlp.gate.weight’, ‘language_model.layers.44.post_attention_layernorm.weight’, ‘language_model.layers.44.self_attn.k_norm.weight’, ‘language_model.layers.44.self_attn.k_proj.weight’, ‘language_model.layers.44.self_attn.o_proj.weight’, ‘language_model.layers.44.self_attn.q_norm.weight’, ‘language_model.layers.44.self_attn.q_proj.weight’, ‘language_model.layers.44.self_attn.v_proj.weight’, ‘language_model.layers.45.input_layernorm.weight’, ‘language_model.layers.45.mlp.experts.down_proj’, ‘language_model.layers.45.mlp.experts.gate_up_proj’, ‘language_model.layers.45.mlp.gate.weight’, ‘language_model.layers.45.post_attention_layernorm.weight’, ‘language_model.layers.45.self_attn.k_norm.weight’, ‘language_model.layers.45.self_attn.k_proj.weight’, ‘language_model.layers.45.self_attn.o_proj.weight’, ‘language_model.layers.45.self_attn.q_norm.weight’, ‘language_model.layers.45.self_attn.q_proj.weight’, ‘language_model.layers.45.self_attn.v_proj.weight’, ‘language_model.layers.46.input_layernorm.weight’, ‘language_model.layers.46.mlp.experts.down_proj’, ‘language_model.layers.46.mlp.experts.gate_up_proj’, ‘language_model.layers.46.mlp.gate.weight’, ‘language_model.layers.46.post_attention_layernorm.weight’, ‘language_model.layers.46.self_attn.k_norm.weight’, ‘language_model.layers.46.self_attn.k_proj.weight’, ‘language_model.layers.46.self_attn.o_proj.weight’, ‘language_model.layers.46.self_attn.q_norm.weight’, ‘language_model.layers.46.self_attn.q_proj.weight’, ‘language_model.layers.46.self_attn.v_proj.weight’, ‘language_model.layers.47.input_layernorm.weight’, ‘language_model.layers.47.mlp.experts.down_proj’, ‘language_model.layers.47.mlp.experts.gate_up_proj’, ‘language_model.layers.47.mlp.gate.weight’, ‘language_model.layers.47.post_attention_layernorm.weight’, ‘language_model.layers.47.self_attn.k_norm.weight’, ‘language_model.layers.47.self_attn.k_proj.weight’, ‘language_model.layers.47.self_attn.o_proj.weight’, ‘language_model.layers.47.self_attn.q_norm.weight’, ‘language_model.layers.47.self_attn.q_proj.weight’, ‘language_model.layers.47.self_attn.v_proj.weight’, ‘language_model.layers.5.input_layernorm.weight’, ‘language_model.layers.5.mlp.experts.down_proj’, ‘language_model.layers.5.mlp.experts.gate_up_proj’, ‘language_model.layers.5.mlp.gate.weight’, ‘language_model.layers.5.post_attention_layernorm.weight’, ‘language_model.layers.5.self_attn.k_norm.weight’, ‘language_model.layers.5.self_attn.k_proj.weight’, ‘language_model.layers.5.self_attn.o_proj.weight’, ‘language_model.layers.5.self_attn.q_norm.weight’, ‘language_model.layers.5.self_attn.q_proj.weight’, ‘language_model.layers.5.self_attn.v_proj.weight’, ‘language_model.layers.6.input_layernorm.weight’, ‘language_model.layers.6.mlp.experts.down_proj’, ‘language_model.layers.6.mlp.experts.gate_up_proj’, ‘language_model.layers.6.mlp.gate.weight’, ‘language_model.layers.6.post_attention_layernorm.weight’, ‘language_model.layers.6.self_attn.k_norm.weight’, ‘language_model.layers.6.self_attn.k_proj.weight’, ‘language_model.layers.6.self_attn.o_proj.weight’, ‘language_model.layers.6.self_attn.q_norm.weight’, ‘language_model.layers.6.self_attn.q_proj.weight’, ‘language_model.layers.6.self_attn.v_proj.weight’, ‘language_model.layers.7.input_layernorm.weight’, ‘language_model.layers.7.mlp.experts.down_proj’, ‘language_model.layers.7.mlp.experts.gate_up_proj’, ‘language_model.layers.7.mlp.gate.weight’, ‘language_model.layers.7.post_attention_layernorm.weight’, ‘language_model.layers.7.self_attn.k_norm.weight’, ‘language_model.layers.7.self_attn.k_proj.weight’, ‘language_model.layers.7.self_attn.o_proj.weight’, ‘language_model.layers.7.self_attn.q_norm.weight’, ‘language_model.layers.7.self_attn.q_proj.weight’, ‘language_model.layers.7.self_attn.v_proj.weight’, ‘language_model.layers.8.input_layernorm.weight’, ‘language_model.layers.8.mlp.experts.down_proj’, ‘language_model.layers.8.mlp.experts.gate_up_proj’, ‘language_model.layers.8.mlp.gate.weight’, ‘language_model.layers.8.post_attention_layernorm.weight’, ‘language_model.layers.8.self_attn.k_norm.weight’, ‘language_model.layers.8.self_attn.k_proj.weight’, ‘language_model.layers.8.self_attn.o_proj.weight’, ‘language_model.layers.8.self_attn.q_norm.weight’, ‘language_model.layers.8.self_attn.q_proj.weight’, ‘language_model.layers.8.self_attn.v_proj.weight’, ‘language_model.layers.9.input_layernorm.weight’, ‘language_model.layers.9.mlp.experts.down_proj’, ‘language_model.layers.9.mlp.experts.gate_up_proj’, ‘language_model.layers.9.mlp.gate.weight’, ‘language_model.layers.9.post_attention_layernorm.weight’, ‘language_model.layers.9.self_attn.k_norm.weight’, ‘language_model.layers.9.self_attn.k_proj.weight’, ‘language_model.layers.9.self_attn.o_proj.weight’, ‘language_model.layers.9.self_attn.q_norm.weight’, ‘language_model.layers.9.self_attn.q_proj.weight’, ‘language_model.layers.9.self_attn.v_proj.weight’, ‘language_model.norm.weight’, ‘visual.blocks.0.attn.proj.bias’, ‘visual.blocks.0.attn.proj.weight’, ‘visual.blocks.0.attn.qkv.bias’, ‘visual.blocks.0.attn.qkv.weight’, ‘visual.blocks.0.mlp.linear_fc1.bias’, ‘visual.blocks.0.mlp.linear_fc1.weight’, ‘visual.blocks.0.mlp.linear_fc2.bias’, ‘visual.blocks.0.mlp.linear_fc2.weight’, ‘visual.blocks.0.norm1.bias’, ‘visual.blocks.0.norm1.weight’, ‘visual.blocks.0.norm2.bias’, ‘visual.blocks.0.norm2.weight’, ‘visual.blocks.1.attn.proj.bias’, ‘visual.blocks.1.attn.proj.weight’, ‘visual.blocks.1.attn.qkv.bias’, ‘visual.blocks.1.attn.qkv.weight’, ‘visual.blocks.1.mlp.linear_fc1.bias’, ‘visual.blocks.1.mlp.linear_fc1.weight’, ‘visual.blocks.1.mlp.linear_fc2.bias’, ‘visual.blocks.1.mlp.linear_fc2.weight’, ‘visual.blocks.1.norm1.bias’, ‘visual.blocks.1.norm1.weight’, ‘visual.blocks.1.norm2.bias’, ‘visual.blocks.1.norm2.weight’, ‘visual.blocks.10.attn.proj.bias’, ‘visual.blocks.10.attn.proj.weight’, ‘visual.blocks.10.attn.qkv.bias’, ‘visual.blocks.10.attn.qkv.weight’, ‘visual.blocks.10.mlp.linear_fc1.bias’, ‘visual.blocks.10.mlp.linear_fc1.weight’, ‘visual.blocks.10.mlp.linear_fc2.bias’, ‘visual.blocks.10.mlp.linear_fc2.weight’, ‘visual.blocks.10.norm1.bias’, ‘visual.blocks.10.norm1.weight’, ‘visual.blocks.10.norm2.bias’, ‘visual.blocks.10.norm2.weight’, ‘visual.blocks.11.attn.proj.bias’, ‘visual.blocks.11.attn.proj.weight’, ‘visual.blocks.11.attn.qkv.bias’, ‘visual.blocks.11.attn.qkv.weight’, ‘visual.blocks.11.mlp.linear_fc1.bias’, ‘visual.blocks.11.mlp.linear_fc1.weight’, ‘visual.blocks.11.mlp.linear_fc2.bias’, ‘visual.blocks.11.mlp.linear_fc2.weight’, ‘visual.blocks.11.norm1.bias’, ‘visual.blocks.11.norm1.weight’, ‘visual.blocks.11.norm2.bias’, ‘visual.blocks.11.norm2.weight’, ‘visual.blocks.12.attn.proj.bias’, ‘visual.blocks.12.attn.proj.weight’, ‘visual.blocks.12.attn.qkv.bias’, ‘visual.blocks.12.attn.qkv.weight’, ‘visual.blocks.12.mlp.linear_fc1.bias’, ‘visual.blocks.12.mlp.linear_fc1.weight’, ‘visual.blocks.12.mlp.linear_fc2.bias’, ‘visual.blocks.12.mlp.linear_fc2.weight’, ‘visual.blocks.12.norm1.bias’, ‘visual.blocks.12.norm1.weight’, ‘visual.blocks.12.norm2.bias’, ‘visual.blocks.12.norm2.weight’, ‘visual.blocks.13.attn.proj.bias’, ‘visual.blocks.13.attn.proj.weight’, ‘visual.blocks.13.attn.qkv.bias’, ‘visual.blocks.13.attn.qkv.weight’, ‘visual.blocks.13.mlp.linear_fc1.bias’, ‘visual.blocks.13.mlp.linear_fc1.weight’, ‘visual.blocks.13.mlp.linear_fc2.bias’, ‘visual.blocks.13.mlp.linear_fc2.weight’, ‘visual.blocks.13.norm1.bias’, ‘visual.blocks.13.norm1.weight’, ‘visual.blocks.13.norm2.bias’, ‘visual.blocks.13.norm2.weight’, ‘visual.blocks.14.attn.proj.bias’, ‘visual.blocks.14.attn.proj.weight’, ‘visual.blocks.14.attn.qkv.bias’, ‘visual.blocks.14.attn.qkv.weight’, ‘visual.blocks.14.mlp.linear_fc1.bias’, ‘visual.blocks.14.mlp.linear_fc1.weight’, ‘visual.blocks.14.mlp.linear_fc2.bias’, ‘visual.blocks.14.mlp.linear_fc2.weight’, ‘visual.blocks.14.norm1.bias’, ‘visual.blocks.14.norm1.weight’, ‘visual.blocks.14.norm2.bias’, ‘visual.blocks.14.norm2.weight’, ‘visual.blocks.15.attn.proj.bias’, ‘visual.blocks.15.attn.proj.weight’, ‘visual.blocks.15.attn.qkv.bias’, ‘visual.blocks.15.attn.qkv.weight’, ‘visual.blocks.15.mlp.linear_fc1.bias’, ‘visual.blocks.15.mlp.linear_fc1.weight’, ‘visual.blocks.15.mlp.linear_fc2.bias’, ‘visual.blocks.15.mlp.linear_fc2.weight’, ‘visual.blocks.15.norm1.bias’, ‘visual.blocks.15.norm1.weight’, ‘visual.blocks.15.norm2.bias’, ‘visual.blocks.15.norm2.weight’, ‘visual.blocks.16.attn.proj.bias’, ‘visual.blocks.16.attn.proj.weight’, ‘visual.blocks.16.attn.qkv.bias’, ‘visual.blocks.16.attn.qkv.weight’, ‘visual.blocks.16.mlp.linear_fc1.bias’, ‘visual.blocks.16.mlp.linear_fc1.weight’, ‘visual.blocks.16.mlp.linear_fc2.bias’, ‘visual.blocks.16.mlp.linear_fc2.weight’, ‘visual.blocks.16.norm1.bias’, ‘visual.blocks.16.norm1.weight’, ‘visual.blocks.16.norm2.bias’, ‘visual.blocks.16.norm2.weight’, ‘visual.blocks.17.attn.proj.bias’, ‘visual.blocks.17.attn.proj.weight’, ‘visual.blocks.17.attn.qkv.bias’, ‘visual.blocks.17.attn.qkv.weight’, ‘visual.blocks.17.mlp.linear_fc1.bias’, ‘visual.blocks.17.mlp.linear_fc1.weight’, ‘visual.blocks.17.mlp.linear_fc2.bias’, ‘visual.blocks.17.mlp.linear_fc2.weight’, ‘visual.blocks.17.norm1.bias’, ‘visual.blocks.17.norm1.weight’, ‘visual.blocks.17.norm2.bias’, ‘visual.blocks.17.norm2.weight’, ‘visual.blocks.18.attn.proj.bias’, ‘visual.blocks.18.attn.proj.weight’, ‘visual.blocks.18.attn.qkv.bias’, ‘visual.blocks.18.attn.qkv.weight’, ‘visual.blocks.18.mlp.linear_fc1.bias’, ‘visual.blocks.18.mlp.linear_fc1.weight’, ‘visual.blocks.18.mlp.linear_fc2.bias’, ‘visual.blocks.18.mlp.linear_fc2.weight’, ‘visual.blocks.18.norm1.bias’, ‘visual.blocks.18.norm1.weight’, ‘visual.blocks.18.norm2.bias’, ‘visual.blocks.18.norm2.weight’, ‘visual.blocks.19.attn.proj.bias’, ‘visual.blocks.19.attn.proj.weight’, ‘visual.blocks.19.attn.qkv.bias’, ‘visual.blocks.19.attn.qkv.weight’, ‘visual.blocks.19.mlp.linear_fc1.bias’, ‘visual.blocks.19.mlp.linear_fc1.weight’, ‘visual.blocks.19.mlp.linear_fc2.bias’, ‘visual.blocks.19.mlp.linear_fc2.weight’, ‘visual.blocks.19.norm1.bias’, ‘visual.blocks.19.norm1.weight’, ‘visual.blocks.19.norm2.bias’, ‘visual.blocks.19.norm2.weight’, ‘visual.blocks.2.attn.proj.bias’, ‘visual.blocks.2.attn.proj.weight’, ‘visual.blocks.2.attn.qkv.bias’, ‘visual.blocks.2.attn.qkv.weight’, ‘visual.blocks.2.mlp.linear_fc1.bias’, ‘visual.blocks.2.mlp.linear_fc1.weight’, ‘visual.blocks.2.mlp.linear_fc2.bias’, ‘visual.blocks.2.mlp.linear_fc2.weight’, ‘visual.blocks.2.norm1.bias’, ‘visual.blocks.2.norm1.weight’, ‘visual.blocks.2.norm2.bias’, ‘visual.blocks.2.norm2.weight’, ‘visual.blocks.20.attn.proj.bias’, ‘visual.blocks.20.attn.proj.weight’, ‘visual.blocks.20.attn.qkv.bias’, ‘visual.blocks.20.attn.qkv.weight’, ‘visual.blocks.20.mlp.linear_fc1.bias’, ‘visual.blocks.20.mlp.linear_fc1.weight’, ‘visual.blocks.20.mlp.linear_fc2.bias’, ‘visual.blocks.20.mlp.linear_fc2.weight’, ‘visual.blocks.20.norm1.bias’, ‘visual.blocks.20.norm1.weight’, ‘visual.blocks.20.norm2.bias’, ‘visual.blocks.20.norm2.weight’, ‘visual.blocks.21.attn.proj.bias’, ‘visual.blocks.21.attn.proj.weight’, ‘visual.blocks.21.attn.qkv.bias’, ‘visual.blocks.21.attn.qkv.weight’, ‘visual.blocks.21.mlp.linear_fc1.bias’, ‘visual.blocks.21.mlp.linear_fc1.weight’, ‘visual.blocks.21.mlp.linear_fc2.bias’, ‘visual.blocks.21.mlp.linear_fc2.weight’, ‘visual.blocks.21.norm1.bias’, ‘visual.blocks.21.norm1.weight’, ‘visual.blocks.21.norm2.bias’, ‘visual.blocks.21.norm2.weight’, ‘visual.blocks.22.attn.proj.bias’, ‘visual.blocks.22.attn.proj.weight’, ‘visual.blocks.22.attn.qkv.bias’, ‘visual.blocks.22.attn.qkv.weight’, ‘visual.blocks.22.mlp.linear_fc1.bias’, ‘visual.blocks.22.mlp.linear_fc1.weight’, ‘visual.blocks.22.mlp.linear_fc2.bias’, ‘visual.blocks.22.mlp.linear_fc2.weight’, ‘visual.blocks.22.norm1.bias’, ‘visual.blocks.22.norm1.weight’, ‘visual.blocks.22.norm2.bias’, ‘visual.blocks.22.norm2.weight’, ‘visual.blocks.23.attn.proj.bias’, ‘visual.blocks.23.attn.proj.weight’, ‘visual.blocks.23.attn.qkv.bias’, ‘visual.blocks.23.attn.qkv.weight’, ‘visual.blocks.23.mlp.linear_fc1.bias’, ‘visual.blocks.23.mlp.linear_fc1.weight’, ‘visual.blocks.23.mlp.linear_fc2.bias’, ‘visual.blocks.23.mlp.linear_fc2.weight’, ‘visual.blocks.23.norm1.bias’, ‘visual.blocks.23.norm1.weight’, ‘visual.blocks.23.norm2.bias’, ‘visual.blocks.23.norm2.weight’, ‘visual.blocks.24.attn.proj.bias’, ‘visual.blocks.24.attn.proj.weight’, ‘visual.blocks.24.attn.qkv.bias’, ‘visual.blocks.24.attn.qkv.weight’, ‘visual.blocks.24.mlp.linear_fc1.bias’, ‘visual.blocks.24.mlp.linear_fc1.weight’, ‘visual.blocks.24.mlp.linear_fc2.bias’, ‘visual.blocks.24.mlp.linear_fc2.weight’, ‘visual.blocks.24.norm1.bias’, ‘visual.blocks.24.norm1.weight’, ‘visual.blocks.24.norm2.bias’, ‘visual.blocks.24.norm2.weight’, ‘visual.blocks.25.attn.proj.bias’, ‘visual.blocks.25.attn.proj.weight’, ‘visual.blocks.25.attn.qkv.bias’, ‘visual.blocks.25.attn.qkv.weight’, ‘visual.blocks.25.mlp.linear_fc1.bias’, ‘visual.blocks.25.mlp.linear_fc1.weight’, ‘visual.blocks.25.mlp.linear_fc2.bias’, ‘visual.blocks.25.mlp.linear_fc2.weight’, ‘visual.blocks.25.norm1.bias’, ‘visual.blocks.25.norm1.weight’, ‘visual.blocks.25.norm2.bias’, ‘visual.blocks.25.norm2.weight’, ‘visual.blocks.26.attn.proj.bias’, ‘visual.blocks.26.attn.proj.weight’, ‘visual.blocks.26.attn.qkv.bias’, ‘visual.blocks.26.attn.qkv.weight’, ‘visual.blocks.26.mlp.linear_fc1.bias’, ‘visual.blocks.26.mlp.linear_fc1.weight’, ‘visual.blocks.26.mlp.linear_fc2.bias’, ‘visual.blocks.26.mlp.linear_fc2.weight’, ‘visual.blocks.26.norm1.bias’, ‘visual.blocks.26.norm1.weight’, ‘visual.blocks.26.norm2.bias’, ‘visual.blocks.26.norm2.weight’, ‘visual.blocks.3.attn.proj.bias’, ‘visual.blocks.3.attn.proj.weight’, ‘visual.blocks.3.attn.qkv.bias’, ‘visual.blocks.3.attn.qkv.weight’, ‘visual.blocks.3.mlp.linear_fc1.bias’, ‘visual.blocks.3.mlp.linear_fc1.weight’, ‘visual.blocks.3.mlp.linear_fc2.bias’, ‘visual.blocks.3.mlp.linear_fc2.weight’, ‘visual.blocks.3.norm1.bias’, ‘visual.blocks.3.norm1.weight’, ‘visual.blocks.3.norm2.bias’, ‘visual.blocks.3.norm2.weight’, ‘visual.blocks.4.attn.proj.bias’, ‘visual.blocks.4.attn.proj.weight’, ‘visual.blocks.4.attn.qkv.bias’, ‘visual.blocks.4.attn.qkv.weight’, ‘visual.blocks.4.mlp.linear_fc1.bias’, ‘visual.blocks.4.mlp.linear_fc1.weight’, ‘visual.blocks.4.mlp.linear_fc2.bias’, ‘visual.blocks.4.mlp.linear_fc2.weight’, ‘visual.blocks.4.norm1.bias’, ‘visual.blocks.4.norm1.weight’, ‘visual.blocks.4.norm2.bias’, ‘visual.blocks.4.norm2.weight’, ‘visual.blocks.5.attn.proj.bias’, ‘visual.blocks.5.attn.proj.weight’, ‘visual.blocks.5.attn.qkv.bias’, ‘visual.blocks.5.attn.qkv.weight’, ‘visual.blocks.5.mlp.linear_fc1.bias’, ‘visual.blocks.5.mlp.linear_fc1.weight’, ‘visual.blocks.5.mlp.linear_fc2.bias’, ‘visual.blocks.5.mlp.linear_fc2.weight’, ‘visual.blocks.5.norm1.bias’, ‘visual.blocks.5.norm1.weight’, ‘visual.blocks.5.norm2.bias’, ‘visual.blocks.5.norm2.weight’, ‘visual.blocks.6.attn.proj.bias’, ‘visual.blocks.6.attn.proj.weight’, ‘visual.blocks.6.attn.qkv.bias’, ‘visual.blocks.6.attn.qkv.weight’, ‘visual.blocks.6.mlp.linear_fc1.bias’, ‘visual.blocks.6.mlp.linear_fc1.weight’, ‘visual.blocks.6.mlp.linear_fc2.bias’, ‘visual.blocks.6.mlp.linear_fc2.weight’, ‘visual.blocks.6.norm1.bias’, ‘visual.blocks.6.norm1.weight’, ‘visual.blocks.6.norm2.bias’, ‘visual.blocks.6.norm2.weight’, ‘visual.blocks.7.attn.proj.bias’, ‘visual.blocks.7.attn.proj.weight’, ‘visual.blocks.7.attn.qkv.bias’, ‘visual.blocks.7.attn.qkv.weight’, ‘visual.blocks.7.mlp.linear_fc1.bias’, ‘visual.blocks.7.mlp.linear_fc1.weight’, ‘visual.blocks.7.mlp.linear_fc2.bias’, ‘visual.blocks.7.mlp.linear_fc2.weight’, ‘visual.blocks.7.norm1.bias’, ‘visual.blocks.7.norm1.weight’, ‘visual.blocks.7.norm2.bias’, ‘visual.blocks.7.norm2.weight’, ‘visual.blocks.8.attn.proj.bias’, ‘visual.blocks.8.attn.proj.weight’, ‘visual.blocks.8.attn.qkv.bias’, ‘visual.blocks.8.attn.qkv.weight’, ‘visual.blocks.8.mlp.linear_fc1.bias’, ‘visual.blocks.8.mlp.linear_fc1.weight’, ‘visual.blocks.8.mlp.linear_fc2.bias’, ‘visual.blocks.8.mlp.linear_fc2.weight’, ‘visual.blocks.8.norm1.bias’, ‘visual.blocks.8.norm1.weight’, ‘visual.blocks.8.norm2.bias’, ‘visual.blocks.8.norm2.weight’, ‘visual.blocks.9.attn.proj.bias’, ‘visual.blocks.9.attn.proj.weight’, ‘visual.blocks.9.attn.qkv.bias’, ‘visual.blocks.9.attn.qkv.weight’, ‘visual.blocks.9.mlp.linear_fc1.bias’, ‘visual.blocks.9.mlp.linear_fc1.weight’, ‘visual.blocks.9.mlp.linear_fc2.bias’, ‘visual.blocks.9.mlp.linear_fc2.weight’, ‘visual.blocks.9.norm1.bias’, ‘visual.blocks.9.norm1.weight’, ‘visual.blocks.9.norm2.bias’, ‘visual.blocks.9.norm2.weight’, ‘visual.deepstack_merger_list.0.linear_fc1.bias’, ‘visual.deepstack_merger_list.0.linear_fc1.weight’, ‘visual.deepstack_merger_list.0.linear_fc2.bias’, ‘visual.deepstack_merger_list.0.linear_fc2.weight’, ‘visual.deepstack_merger_list.0.norm.bias’, ‘visual.deepstack_merger_list.0.norm.weight’, ‘visual.deepstack_merger_list.1.linear_fc1.bias’, ‘visual.deepstack_merger_list.1.linear_fc1.weight’, ‘visual.deepstack_merger_list.1.linear_fc2.bias’, ‘visual.deepstack_merger_list.1.linear_fc2.weight’, ‘visual.deepstack_merger_list.1.norm.bias’, ‘visual.deepstack_merger_list.1.norm.weight’, ‘visual.deepstack_merger_list.2.linear_fc1.bias’, ‘visual.deepstack_merger_list.2.linear_fc1.weight’, ‘visual.deepstack_merger_list.2.linear_fc2.bias’, ‘visual.deepstack_merger_list.2.linear_fc2.weight’, ‘visual.deepstack_merger_list.2.norm.bias’, ‘visual.deepstack_merger_list.2.norm.weight’, ‘visual.merger.linear_fc1.bias’, ‘visual.merger.linear_fc1.weight’, ‘visual.merger.linear_fc2.bias’, ‘visual.merger.linear_fc2.weight’, ‘visual.merger.norm.bias’, ‘visual.merger.norm.weight’, ‘visual.patch_embed.proj.bias’, ‘visual.patch_embed.proj.weight’, ‘visual.pos_embed.weight’]You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.Traceback (most recent call last):File “/workspace/scripts/train_lora.py”, line 165, in model = AutoModel.from_pretrained(^^^^^^^^^^^^^^^^^^^^^^^^^^File “/usr/local/lib/python3.12/dist-packages/transformers/models/auto/auto_factory.py”, line 604, in from_pretrainedreturn model_class.from_pretrained(^^^^^^^^^^^^^^^^^^^^^^^^^^^^File “/usr/local/lib/python3.12/dist-packages/transformers/modeling_utils.py”, line 277, in _wrapperreturn func(*args, **kwargs)^^^^^^^^^^^^^^^^^^^^^File “/usr/local/lib/python3.12/dist-packages/transformers/modeling_utils.py”, line 5140, in from_pretraineddispatch_model(model, **device_map_kwargs)File “/usr/local/lib/python3.12/dist-packages/accelerate/big_modeling.py”, line 502, in dispatch_modelmodel.to(device)File “/usr/local/lib/python3.12/dist-packages/transformers/modeling_utils.py”, line 4343, in toreturn super().to(*args, **kwargs)^^^^^^^^^^^^^^^^^^^^^^^^^^^File “/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py”, line 1371, in toreturn self._apply(convert)^^^^^^^^^^^^^^^^^^^^File “/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py”, line 930, in _applymodule._apply(fn)File “/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py”, line 930, in _applymodule._apply(fn)File “/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py”, line 930, in _applymodule._apply(fn)[Previous line repeated 2 more times]File “/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py”, line 957, in _applyparam_applied = fn(param)^^^^^^^^^File “/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py”, line 1364, in convertraise NotImplementedError(NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() when moving module from meta to a different device.
Can someone explain why I’m getting this error? And how can I fix the problem?
Thanks