crevavi@crevavi-desktop:~/jetson-inference/python/training/classification$ python train.py --model-dir=utensils ~/datasets/utensils/ --epochs=1 --batch-size=4
Use GPU: 0 for training
=> dataset classes: 3 [‘background’, ‘fork’, ‘spoon’]
=> using pre-trained model ‘resnet18’
=> reshaped ResNet fully-connected layer with: Linear(in_features=512, out_features=3, bias=True)
Epoch: [0][ 0/23] Time 60.684 (60.684) Data 1.600 ( 1.600) Loss 1.6361e+00 (1.6361e+00) Acc@1 25.00 ( 25.00) Acc@5 100.00 (100.00)
Epoch: [0][10/23] Time 0.751 ( 6.571) Data 0.000 ( 0.157) Loss 1.4579e+00 (1.4134e+01) Acc@1 50.00 ( 36.36) Acc@5 100.00 (100.00)
Epoch: [0][20/23] Time 0.752 ( 3.801) Data 0.000 ( 0.102) Loss 4.4567e+00 (1.6097e+01) Acc@1 50.00 ( 35.71) Acc@5 100.00 (100.00)
Epoch: [0] completed, elapsed time 85.990 seconds
Test: [ 0/23] Time 2.100 ( 2.100) Loss 2.8461e+05 (2.8461e+05) Acc@1 0.00 ( 0.00) Acc@5 100.00 (100.00)
Test: [10/23] Time 0.273 ( 0.438) Loss 0.0000e+00 (2.4456e+05) Acc@1 100.00 ( 29.55) Acc@5 100.00 (100.00)
Test: [20/23] Time 0.268 ( 0.359) Loss 1.3643e+05 (1.6559e+05) Acc@1 0.00 ( 35.71) Acc@5 100.00 (100.00)
Acc@1 32.967 Acc@5 100.000
saved best model to: utensils/model_best.pth.tar
Segmentation fault (core dumped)
crevavi@crevavi-desktop:~/jetson-inference/python/training/classification$
Hi @dusty_nv,
Thanks for the quick response. I tried for default 34 epochs as well. Facing the same issue.
After I tried
python train.py --model-dir=utensils ~/datasets/utensils/
I went ahead with next command as below
python onnx_export.py --model-dir=utensils
and then
imagenet-camera --model=utensils/resnet18.onnx --input_blob=input_0 --output_blob=output0 --lables=/home/crevavi/datasets/utensils/labels.txt --camera=/dev/video0 --width=640 --height=480
I keep getting segmentation fault at every step.
…