Good day !
I am using the Python API to TensorRT to create an inference engine:
I am working with a Caffe SSD model based on VGGNet and I have set up:
TensorRTInference.py
...
...
G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.ERROR)
INPUT_LAYERS = ['data']
OUTPUT_LAYERS = ['detection_out']
INPUT_H = 300
INPUT_W = 300
OUTPUT_SIZE = 37
MODEL_PROTOTXT = ./deploy.prototxt
CAFFE_MODEL = ./SSD_Recog300x300_iter_50000.caffemodel
engine = trt.utils.caffe_to_trt_engine(G_LOGGER,
MODEL_PROTOTXT,
CAFFE_MODEL,
1,
1 << 20,
OUTPUT_LAYERS,
trt.infer.DataType.FLOAT)
...
...
These files are valid and working when I have used them in Caffe’s Python API, but TensorRT returns the following error:
AssertionError: Caffe parsing failed on line 284 in statement assert(blob_name_to_tensor)
Why is my Caffe Model not being parsed correctly ?
P.S: Sory fr my bad engliz
UPDATE Here is more information on the error. Still haven’t resolved it.
[libprotobuf ERROR google/protobuf/text_format.cc:298] Error parsing text-format ditcaffe.NetParameter: 817:14: Message type "ditcaffe.LayerParameter" has no field named "norm_param".
Could not parse deploy file
[TensorRT] ERROR: Failed to parse caffe model