Segmentation Fault when trying to run a custom network (Solved)

Hi. I am currently trying to deploy DetectNet placed under dusty-nv’s jetson-inference repo. In the PGIE-FP16-CarType-CarMake-CarColor.txt file, I’m changing the parameters model-file=/home/nvidia/jetson-inference/data/networks/bvlc_googlenet.caffemodel, proto-file=/home/nvidia/jetson-inference/data/networks/detectnet.prototxt and labelfile-path=/home/nvidia/jetson-inference/data/networks/ilsvrc12_synset_words.txt but not changing the num-classes under the [primary-gie] section. This way, I’m getting “Segmentation fault (core dumped)” error. What should I do to run a custom network? Thanks in advance.

Hi Doruk,
Is it possible to share your model to let us reproduce on my side?

Thanks
wayne zhu

Of course. Here:

# DetectNet network

# Data/Input layers
name: "DetectNet"
layer {
  name: "train_data"
  type: "Data"
  top: "data"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_train_images.lmdb"
    batch_size: 10
  }
  include: { phase: TRAIN }
}
layer {
  name: "train_label"
  type: "Data"
  top: "label"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_train_labels.lmdb"
    batch_size: 10
  }
  include: { phase: TRAIN }
}
layer {
  name: "val_data"
  type: "Data"
  top: "data"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_test_images.lmdb"
    batch_size: 6
  }
  include: { phase: TEST stage: "val" }
}
layer {
  name: "val_label"
  type: "Data"
  top: "label"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_test_labels.lmdb"
    batch_size: 6
  }
  include: { phase: TEST stage: "val" }
}
layer {
  name: "deploy_data"
  type: "Input"
  top: "data"
  input_param {
    shape {
      dim: 1
      dim: 3
      dim: 640
      dim: 640
    }
  }
  include: { phase: TEST not_stage: "val" }
}

# Data transformation layers
layer {
  name: "train_transform"
  type: "DetectNetTransformation"
  bottom: "data"
  bottom: "label"
  top: "transformed_data"
  top: "transformed_label"
  detectnet_groundtruth_param: {
    stride: 16
    scale_cvg: 0.4
    gridbox_type: GRIDBOX_MIN
    coverage_type: RECTANGULAR
    min_cvg_len: 20
    obj_norm: true
    image_size_x: 640
    image_size_y: 640
    crop_bboxes: false
    object_class: { src: 1 dst: 0} # obj class 1 -> cvg index 0
  }
   detectnet_augmentation_param: {
    crop_prob: 1
    shift_x: 32
    shift_y: 32
    flip_prob: 0.5
    rotation_prob: 0
    max_rotate_degree: 5
    scale_prob: 0.4
    scale_min: 0.8
    scale_max: 1.2
    hue_rotation_prob: 0.8
    hue_rotation: 30
    desaturation_prob: 0.8
    desaturation_max: 0.8
  }
  transform_param: {
    mean_value: 127
  }
  include: { phase: TRAIN }
}
layer {
  name: "val_transform"
  type: "DetectNetTransformation"
  bottom: "data"
  bottom: "label"
  top: "transformed_data"
  top: "transformed_label"
  detectnet_groundtruth_param: {
    stride: 16
    scale_cvg: 0.4
    gridbox_type: GRIDBOX_MIN
    coverage_type: RECTANGULAR
    min_cvg_len: 20
    obj_norm: true
    image_size_x: 640
    image_size_y: 640
    crop_bboxes: false
    object_class: { src: 1 dst: 0} # obj class 1 -> cvg index 0
  }
  transform_param: {
    mean_value: 127
  }
  include: { phase: TEST stage: "val" }
}
layer {
  name: "deploy_transform"
  type: "Power"
  bottom: "data"
  top: "transformed_data"
  power_param {
    shift: -127
  }
  include: { phase: TEST not_stage: "val" }
}

# Label conversion layers
layer {
  name: "slice-label"
  type: "Slice"
  bottom: "transformed_label"
  top: "foreground-label"
  top: "bbox-label"
  top: "size-label"
  top: "obj-label"
  top: "coverage-label"
  slice_param {
    slice_dim: 1
    slice_point: 1
    slice_point: 5
    slice_point: 7
    slice_point: 8
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "coverage-block"
  type: "Concat"
  bottom: "foreground-label"
  bottom: "foreground-label"
  bottom: "foreground-label"
  bottom: "foreground-label"
  top: "coverage-block"
  concat_param {
    concat_dim: 1
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "size-block"
  type: "Concat"
  bottom: "size-label"
  bottom: "size-label"
  top: "size-block"
  concat_param {
    concat_dim: 1
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "obj-block"
  type: "Concat"
  bottom: "obj-label"
  bottom: "obj-label"
  bottom: "obj-label"
  bottom: "obj-label"
  top: "obj-block"
  concat_param {
    concat_dim: 1
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bb-label-norm"
  type: "Eltwise"
  bottom: "bbox-label"
  bottom: "size-block"
  top: "bbox-label-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bb-obj-norm"
  type: "Eltwise"
  bottom: "bbox-label-norm"
  bottom: "obj-block"
  top: "bbox-obj-label-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}

######################################################################
# Start of convolutional network
######################################################################

layer {
  name: "conv1/7x7_s2"
  type: "Convolution"
  bottom: "transformed_data"
  top: "conv1/7x7_s2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv1/relu_7x7"
  type: "ReLU"
  bottom: "conv1/7x7_s2"
  top: "conv1/7x7_s2"
}

layer {
  name: "pool1/3x3_s2"
  type: "Pooling"
  bottom: "conv1/7x7_s2"
  top: "pool1/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "pool1/norm1"
  type: "LRN"
  bottom: "pool1/3x3_s2"
  top: "pool1/norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "conv2/3x3_reduce"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "conv2/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_3x3_reduce"
  type: "ReLU"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3_reduce"
}

layer {
  name: "conv2/3x3"
  type: "Convolution"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_3x3"
  type: "ReLU"
  bottom: "conv2/3x3"
  top: "conv2/3x3"
}

layer {
  name: "conv2/norm2"
  type: "LRN"
  bottom: "conv2/3x3"
  top: "conv2/norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "pool2/3x3_s2"
  type: "Pooling"
  bottom: "conv2/norm2"
  top: "pool2/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "inception_3a/1x1"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_1x1"
  type: "ReLU"
  bottom: "inception_3a/1x1"
  top: "inception_3a/1x1"
}

layer {
  name: "inception_3a/3x3_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3_reduce"
}

layer {
  name: "inception_3a/3x3"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_3x3"
  type: "ReLU"
  bottom: "inception_3a/3x3"
  top: "inception_3a/3x3"
}

layer {
  name: "inception_3a/5x5_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5_reduce"
}
layer {
  name: "inception_3a/5x5"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5"
  type: "ReLU"
  bottom: "inception_3a/5x5"
  top: "inception_3a/5x5"
}

layer {
  name: "inception_3a/pool"
  type: "Pooling"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}

layer {
  name: "inception_3a/pool_proj"
  type: "Convolution"
  bottom: "inception_3a/pool"
  top: "inception_3a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/pool_proj"
}

layer {
  name: "inception_3a/output"
  type: "Concat"
  bottom: "inception_3a/1x1"
  bottom: "inception_3a/3x3"
  bottom: "inception_3a/5x5"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/output"
}

layer {
  name: "inception_3b/1x1"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3b/relu_1x1"
  type: "ReLU"
  bottom: "inception_3b/1x1"
  top: "inception_3b/1x1"
}

layer {
  name: "inception_3b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3_reduce"
}
layer {
  name: "inception_3b/3x3"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3"
  type: "ReLU"
  bottom: "inception_3b/3x3"
  top: "inception_3b/3x3"
}

layer {
  name: "inception_3b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5_reduce"
}
layer {
  name: "inception_3b/5x5"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5"
  type: "ReLU"
  bottom: "inception_3b/5x5"
  top: "inception_3b/5x5"
}

layer {
  name: "inception_3b/pool"
  type: "Pooling"
  bottom: "inception_3a/output"
  top: "inception_3b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj"
  type: "Convolution"
  bottom: "inception_3b/pool"
  top: "inception_3b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/pool_proj"
}
layer {
  name: "inception_3b/output"
  type: "Concat"
  bottom: "inception_3b/1x1"
  bottom: "inception_3b/3x3"
  bottom: "inception_3b/5x5"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/output"
}

layer {
  name: "pool3/3x3_s2"
  type: "Pooling"
  bottom: "inception_3b/output"
  top: "pool3/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "inception_4a/1x1"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_1x1"
  type: "ReLU"
  bottom: "inception_4a/1x1"
  top: "inception_4a/1x1"
}

layer {
  name: "inception_4a/3x3_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3_reduce"
}

layer {
  name: "inception_4a/3x3"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_3x3"
  type: "ReLU"
  bottom: "inception_4a/3x3"
  top: "inception_4a/3x3"
}

layer {
  name: "inception_4a/5x5_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5_reduce"
}
layer {
  name: "inception_4a/5x5"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5"
  type: "ReLU"
  bottom: "inception_4a/5x5"
  top: "inception_4a/5x5"
}
layer {
  name: "inception_4a/pool"
  type: "Pooling"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj"
  type: "Convolution"
  bottom: "inception_4a/pool"
  top: "inception_4a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/pool_proj"
}
layer {
  name: "inception_4a/output"
  type: "Concat"
  bottom: "inception_4a/1x1"
  bottom: "inception_4a/3x3"
  bottom: "inception_4a/5x5"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/output"
}

layer {
  name: "inception_4b/1x1"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4b/relu_1x1"
  type: "ReLU"
  bottom: "inception_4b/1x1"
  top: "inception_4b/1x1"
}
layer {
  name: "inception_4b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3_reduce"
}
layer {
  name: "inception_4b/3x3"
  type: "Convolution"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 224
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3"
  type: "ReLU"
  bottom: "inception_4b/3x3"
  top: "inception_4b/3x3"
}
layer {
  name: "inception_4b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5_reduce"
}
layer {
  name: "inception_4b/5x5"
  type: "Convolution"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5"
  type: "ReLU"
  bottom: "inception_4b/5x5"
  top: "inception_4b/5x5"
}
layer {
  name: "inception_4b/pool"
  type: "Pooling"
  bottom: "inception_4a/output"
  top: "inception_4b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4b/pool_proj"
  type: "Convolution"
  bottom: "inception_4b/pool"
  top: "inception_4b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/pool_proj"
}
layer {
  name: "inception_4b/output"
  type: "Concat"
  bottom: "inception_4b/1x1"
  bottom: "inception_4b/3x3"
  bottom: "inception_4b/5x5"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/output"
}

layer {
  name: "inception_4c/1x1"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4c/relu_1x1"
  type: "ReLU"
  bottom: "inception_4c/1x1"
  top: "inception_4c/1x1"
}

layer {
  name: "inception_4c/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4c/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3_reduce"
}
layer {
  name: "inception_4c/3x3"
  type: "Convolution"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_3x3"
  type: "ReLU"
  bottom: "inception_4c/3x3"
  top: "inception_4c/3x3"
}
layer {
  name: "inception_4c/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5_reduce"
}
layer {
  name: "inception_4c/5x5"
  type: "Convolution"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5"
  type: "ReLU"
  bottom: "inception_4c/5x5"
  top: "inception_4c/5x5"
}
layer {
  name: "inception_4c/pool"
  type: "Pooling"
  bottom: "inception_4b/output"
  top: "inception_4c/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4c/pool_proj"
  type: "Convolution"
  bottom: "inception_4c/pool"
  top: "inception_4c/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/pool_proj"
}
layer {
  name: "inception_4c/output"
  type: "Concat"
  bottom: "inception_4c/1x1"
  bottom: "inception_4c/3x3"
  bottom: "inception_4c/5x5"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/output"
}

layer {
  name: "inception_4d/1x1"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_1x1"
  type: "ReLU"
  bottom: "inception_4d/1x1"
  top: "inception_4d/1x1"
}
layer {
  name: "inception_4d/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 144
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3_reduce"
}
layer {
  name: "inception_4d/3x3"
  type: "Convolution"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 288
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3"
  type: "ReLU"
  bottom: "inception_4d/3x3"
  top: "inception_4d/3x3"
}
layer {
  name: "inception_4d/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5_reduce"
}
layer {
  name: "inception_4d/5x5"
  type: "Convolution"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5"
  type: "ReLU"
  bottom: "inception_4d/5x5"
  top: "inception_4d/5x5"
}
layer {
  name: "inception_4d/pool"
  type: "Pooling"
  bottom: "inception_4c/output"
  top: "inception_4d/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4d/pool_proj"
  type: "Convolution"
  bottom: "inception_4d/pool"
  top: "inception_4d/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/pool_proj"
}
layer {
  name: "inception_4d/output"
  type: "Concat"
  bottom: "inception_4d/1x1"
  bottom: "inception_4d/3x3"
  bottom: "inception_4d/5x5"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/output"
}

layer {
  name: "inception_4e/1x1"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_1x1"
  type: "ReLU"
  bottom: "inception_4e/1x1"
  top: "inception_4e/1x1"
}
layer {
  name: "inception_4e/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3_reduce"
}
layer {
  name: "inception_4e/3x3"
  type: "Convolution"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3"
  type: "ReLU"
  bottom: "inception_4e/3x3"
  top: "inception_4e/3x3"
}
layer {
  name: "inception_4e/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5_reduce"
}
layer {
  name: "inception_4e/5x5"
  type: "Convolution"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5"
  type: "ReLU"
  bottom: "inception_4e/5x5"
  top: "inception_4e/5x5"
}
layer {
  name: "inception_4e/pool"
  type: "Pooling"
  bottom: "inception_4d/output"
  top: "inception_4e/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4e/pool_proj"
  type: "Convolution"
  bottom: "inception_4e/pool"
  top: "inception_4e/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/pool_proj"
}
layer {
  name: "inception_4e/output"
  type: "Concat"
  bottom: "inception_4e/1x1"
  bottom: "inception_4e/3x3"
  bottom: "inception_4e/5x5"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/output"
}



layer {
  name: "inception_5a/1x1"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_1x1"
  type: "ReLU"
  bottom: "inception_5a/1x1"
  top: "inception_5a/1x1"
}

layer {
  name: "inception_5a/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3_reduce"
}

layer {
  name: "inception_5a/3x3"
  type: "Convolution"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3"
  type: "ReLU"
  bottom: "inception_5a/3x3"
  top: "inception_5a/3x3"
}
layer {
  name: "inception_5a/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5_reduce"
}
layer {
  name: "inception_5a/5x5"
  type: "Convolution"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5"
  type: "ReLU"
  bottom: "inception_5a/5x5"
  top: "inception_5a/5x5"
}
layer {
  name: "inception_5a/pool"
  type: "Pooling"
  bottom: "inception_4e/output"
  top: "inception_5a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5a/pool_proj"
  type: "Convolution"
  bottom: "inception_5a/pool"
  top: "inception_5a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/pool_proj"
}
layer {
  name: "inception_5a/output"
  type: "Concat"
  bottom: "inception_5a/1x1"
  bottom: "inception_5a/3x3"
  bottom: "inception_5a/5x5"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/output"
}

layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 1
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "inception_5a/output"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/pool_proj"
}
layer {
  name: "inception_5b/output"
  type: "Concat"
  bottom: "inception_5b/1x1"
  bottom: "inception_5b/3x3"
  bottom: "inception_5b/5x5"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/output"
}
layer {
  name: "pool5/drop_s1"
  type: "Dropout"
  bottom: "inception_5b/output"
  top: "pool5/drop_s1"
  dropout_param {
    dropout_ratio: 0.4
  }
}
layer {
  name: "cvg/classifier"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "cvg/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 1
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}
layer {
  name: "coverage/sig"
  type: "Sigmoid"
  bottom: "cvg/classifier"
  top: "coverage"
}
layer {
  name: "bbox/regressor"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "bboxes"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 4
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}

######################################################################
# End of convolutional network
######################################################################

# Convert bboxes
layer {
  name: "bbox_mask"
  type: "Eltwise"
  bottom: "bboxes"
  bottom: "coverage-block"
  top: "bboxes-masked"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bbox-norm"
  type: "Eltwise"
  bottom: "bboxes-masked"
  bottom: "size-block"
  top: "bboxes-masked-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bbox-obj-norm"
  type: "Eltwise"
  bottom: "bboxes-masked-norm"
  bottom: "obj-block"
  top: "bboxes-obj-masked-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}

# Loss layers
layer {
  name: "bbox_loss"
  type: "L1Loss"
  bottom: "bboxes-obj-masked-norm"
  bottom: "bbox-obj-label-norm"
  top: "loss_bbox"
  loss_weight: 2
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "coverage_loss"
  type: "EuclideanLoss"
  bottom: "coverage"
  bottom: "coverage-label"
  top: "loss_coverage"
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}

# Cluster bboxes
layer {
    type: 'Python'
    name: 'cluster'
    bottom: 'coverage'
    bottom: 'bboxes'
    top: 'bbox-list'
    python_param {
        module: 'caffe.layers.detectnet.clustering'
        layer: 'ClusterDetections'
        param_str : '640, 640, 16, 0.6, 2, 0.02, 22, 1'
    }
    include: { phase: TEST }
}

# Calculate mean average precision
layer {
  type: 'Python'
  name: 'cluster_gt'
  bottom: 'coverage-label'
  bottom: 'bbox-label'
  top: 'bbox-list-label'
  python_param {
      module: 'caffe.layers.detectnet.clustering'
      layer: 'ClusterGroundtruth'
      param_str : '640, 640, 16, 1'
  }
  include: { phase: TEST stage: "val" }
}
layer {
    type: 'Python'
    name: 'score'
    bottom: 'bbox-list-label'
    bottom: 'bbox-list'
    top: 'bbox-list-scored'
    python_param {
        module: 'caffe.layers.detectnet.mean_ap'
        layer: 'ScoreDetections'
    }
    include: { phase: TEST stage: "val" }
}
layer {
    type: 'Python'
    name: 'mAP'
    bottom: 'bbox-list-scored'
    top: 'mAP'
    top: 'precision'
    top: 'recall'
    python_param {
        module: 'caffe.layers.detectnet.mean_ap'
        layer: 'mAP'
        param_str : '640, 640, 16'
    }
    include: { phase: TEST stage: "val" }
}

and here is the caffemodel: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

Of course. Here:

# DetectNet network

# Data/Input layers
name: "DetectNet"
layer {
  name: "train_data"
  type: "Data"
  top: "data"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_train_images.lmdb"
    batch_size: 10
  }
  include: { phase: TRAIN }
}
layer {
  name: "train_label"
  type: "Data"
  top: "label"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_train_labels.lmdb"
    batch_size: 10
  }
  include: { phase: TRAIN }
}
layer {
  name: "val_data"
  type: "Data"
  top: "data"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_test_images.lmdb"
    batch_size: 6
  }
  include: { phase: TEST stage: "val" }
}
layer {
  name: "val_label"
  type: "Data"
  top: "label"
  data_param {
    backend: LMDB
    source: "examples/kitti/kitti_test_labels.lmdb"
    batch_size: 6
  }
  include: { phase: TEST stage: "val" }
}
layer {
  name: "deploy_data"
  type: "Input"
  top: "data"
  input_param {
    shape {
      dim: 1
      dim: 3
      dim: 640
      dim: 640
    }
  }
  include: { phase: TEST not_stage: "val" }
}

# Data transformation layers
layer {
  name: "train_transform"
  type: "DetectNetTransformation"
  bottom: "data"
  bottom: "label"
  top: "transformed_data"
  top: "transformed_label"
  detectnet_groundtruth_param: {
    stride: 16
    scale_cvg: 0.4
    gridbox_type: GRIDBOX_MIN
    coverage_type: RECTANGULAR
    min_cvg_len: 20
    obj_norm: true
    image_size_x: 640
    image_size_y: 640
    crop_bboxes: false
    object_class: { src: 1 dst: 0} # obj class 1 -> cvg index 0
  }
   detectnet_augmentation_param: {
    crop_prob: 1
    shift_x: 32
    shift_y: 32
    flip_prob: 0.5
    rotation_prob: 0
    max_rotate_degree: 5
    scale_prob: 0.4
    scale_min: 0.8
    scale_max: 1.2
    hue_rotation_prob: 0.8
    hue_rotation: 30
    desaturation_prob: 0.8
    desaturation_max: 0.8
  }
  transform_param: {
    mean_value: 127
  }
  include: { phase: TRAIN }
}
layer {
  name: "val_transform"
  type: "DetectNetTransformation"
  bottom: "data"
  bottom: "label"
  top: "transformed_data"
  top: "transformed_label"
  detectnet_groundtruth_param: {
    stride: 16
    scale_cvg: 0.4
    gridbox_type: GRIDBOX_MIN
    coverage_type: RECTANGULAR
    min_cvg_len: 20
    obj_norm: true
    image_size_x: 640
    image_size_y: 640
    crop_bboxes: false
    object_class: { src: 1 dst: 0} # obj class 1 -> cvg index 0
  }
  transform_param: {
    mean_value: 127
  }
  include: { phase: TEST stage: "val" }
}
layer {
  name: "deploy_transform"
  type: "Power"
  bottom: "data"
  top: "transformed_data"
  power_param {
    shift: -127
  }
  include: { phase: TEST not_stage: "val" }
}

# Label conversion layers
layer {
  name: "slice-label"
  type: "Slice"
  bottom: "transformed_label"
  top: "foreground-label"
  top: "bbox-label"
  top: "size-label"
  top: "obj-label"
  top: "coverage-label"
  slice_param {
    slice_dim: 1
    slice_point: 1
    slice_point: 5
    slice_point: 7
    slice_point: 8
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "coverage-block"
  type: "Concat"
  bottom: "foreground-label"
  bottom: "foreground-label"
  bottom: "foreground-label"
  bottom: "foreground-label"
  top: "coverage-block"
  concat_param {
    concat_dim: 1
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "size-block"
  type: "Concat"
  bottom: "size-label"
  bottom: "size-label"
  top: "size-block"
  concat_param {
    concat_dim: 1
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "obj-block"
  type: "Concat"
  bottom: "obj-label"
  bottom: "obj-label"
  bottom: "obj-label"
  bottom: "obj-label"
  top: "obj-block"
  concat_param {
    concat_dim: 1
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bb-label-norm"
  type: "Eltwise"
  bottom: "bbox-label"
  bottom: "size-block"
  top: "bbox-label-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bb-obj-norm"
  type: "Eltwise"
  bottom: "bbox-label-norm"
  bottom: "obj-block"
  top: "bbox-obj-label-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}

######################################################################
# Start of convolutional network
######################################################################

layer {
  name: "conv1/7x7_s2"
  type: "Convolution"
  bottom: "transformed_data"
  top: "conv1/7x7_s2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv1/relu_7x7"
  type: "ReLU"
  bottom: "conv1/7x7_s2"
  top: "conv1/7x7_s2"
}

layer {
  name: "pool1/3x3_s2"
  type: "Pooling"
  bottom: "conv1/7x7_s2"
  top: "pool1/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "pool1/norm1"
  type: "LRN"
  bottom: "pool1/3x3_s2"
  top: "pool1/norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "conv2/3x3_reduce"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "conv2/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_3x3_reduce"
  type: "ReLU"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3_reduce"
}

layer {
  name: "conv2/3x3"
  type: "Convolution"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_3x3"
  type: "ReLU"
  bottom: "conv2/3x3"
  top: "conv2/3x3"
}

layer {
  name: "conv2/norm2"
  type: "LRN"
  bottom: "conv2/3x3"
  top: "conv2/norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "pool2/3x3_s2"
  type: "Pooling"
  bottom: "conv2/norm2"
  top: "pool2/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "inception_3a/1x1"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_1x1"
  type: "ReLU"
  bottom: "inception_3a/1x1"
  top: "inception_3a/1x1"
}

layer {
  name: "inception_3a/3x3_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3_reduce"
}

layer {
  name: "inception_3a/3x3"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_3x3"
  type: "ReLU"
  bottom: "inception_3a/3x3"
  top: "inception_3a/3x3"
}

layer {
  name: "inception_3a/5x5_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5_reduce"
}
layer {
  name: "inception_3a/5x5"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5"
  type: "ReLU"
  bottom: "inception_3a/5x5"
  top: "inception_3a/5x5"
}

layer {
  name: "inception_3a/pool"
  type: "Pooling"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}

layer {
  name: "inception_3a/pool_proj"
  type: "Convolution"
  bottom: "inception_3a/pool"
  top: "inception_3a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/pool_proj"
}

layer {
  name: "inception_3a/output"
  type: "Concat"
  bottom: "inception_3a/1x1"
  bottom: "inception_3a/3x3"
  bottom: "inception_3a/5x5"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/output"
}

layer {
  name: "inception_3b/1x1"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3b/relu_1x1"
  type: "ReLU"
  bottom: "inception_3b/1x1"
  top: "inception_3b/1x1"
}

layer {
  name: "inception_3b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3_reduce"
}
layer {
  name: "inception_3b/3x3"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3"
  type: "ReLU"
  bottom: "inception_3b/3x3"
  top: "inception_3b/3x3"
}

layer {
  name: "inception_3b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5_reduce"
}
layer {
  name: "inception_3b/5x5"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5"
  type: "ReLU"
  bottom: "inception_3b/5x5"
  top: "inception_3b/5x5"
}

layer {
  name: "inception_3b/pool"
  type: "Pooling"
  bottom: "inception_3a/output"
  top: "inception_3b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj"
  type: "Convolution"
  bottom: "inception_3b/pool"
  top: "inception_3b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/pool_proj"
}
layer {
  name: "inception_3b/output"
  type: "Concat"
  bottom: "inception_3b/1x1"
  bottom: "inception_3b/3x3"
  bottom: "inception_3b/5x5"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/output"
}

layer {
  name: "pool3/3x3_s2"
  type: "Pooling"
  bottom: "inception_3b/output"
  top: "pool3/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "inception_4a/1x1"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_1x1"
  type: "ReLU"
  bottom: "inception_4a/1x1"
  top: "inception_4a/1x1"
}

layer {
  name: "inception_4a/3x3_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3_reduce"
}

layer {
  name: "inception_4a/3x3"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_3x3"
  type: "ReLU"
  bottom: "inception_4a/3x3"
  top: "inception_4a/3x3"
}

layer {
  name: "inception_4a/5x5_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5_reduce"
}
layer {
  name: "inception_4a/5x5"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5"
  type: "ReLU"
  bottom: "inception_4a/5x5"
  top: "inception_4a/5x5"
}
layer {
  name: "inception_4a/pool"
  type: "Pooling"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj"
  type: "Convolution"
  bottom: "inception_4a/pool"
  top: "inception_4a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/pool_proj"
}
layer {
  name: "inception_4a/output"
  type: "Concat"
  bottom: "inception_4a/1x1"
  bottom: "inception_4a/3x3"
  bottom: "inception_4a/5x5"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/output"
}

layer {
  name: "inception_4b/1x1"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4b/relu_1x1"
  type: "ReLU"
  bottom: "inception_4b/1x1"
  top: "inception_4b/1x1"
}
layer {
  name: "inception_4b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3_reduce"
}
layer {
  name: "inception_4b/3x3"
  type: "Convolution"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 224
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3"
  type: "ReLU"
  bottom: "inception_4b/3x3"
  top: "inception_4b/3x3"
}
layer {
  name: "inception_4b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5_reduce"
}
layer {
  name: "inception_4b/5x5"
  type: "Convolution"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5"
  type: "ReLU"
  bottom: "inception_4b/5x5"
  top: "inception_4b/5x5"
}
layer {
  name: "inception_4b/pool"
  type: "Pooling"
  bottom: "inception_4a/output"
  top: "inception_4b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4b/pool_proj"
  type: "Convolution"
  bottom: "inception_4b/pool"
  top: "inception_4b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/pool_proj"
}
layer {
  name: "inception_4b/output"
  type: "Concat"
  bottom: "inception_4b/1x1"
  bottom: "inception_4b/3x3"
  bottom: "inception_4b/5x5"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/output"
}

layer {
  name: "inception_4c/1x1"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4c/relu_1x1"
  type: "ReLU"
  bottom: "inception_4c/1x1"
  top: "inception_4c/1x1"
}

layer {
  name: "inception_4c/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4c/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3_reduce"
}
layer {
  name: "inception_4c/3x3"
  type: "Convolution"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_3x3"
  type: "ReLU"
  bottom: "inception_4c/3x3"
  top: "inception_4c/3x3"
}
layer {
  name: "inception_4c/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5_reduce"
}
layer {
  name: "inception_4c/5x5"
  type: "Convolution"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5"
  type: "ReLU"
  bottom: "inception_4c/5x5"
  top: "inception_4c/5x5"
}
layer {
  name: "inception_4c/pool"
  type: "Pooling"
  bottom: "inception_4b/output"
  top: "inception_4c/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4c/pool_proj"
  type: "Convolution"
  bottom: "inception_4c/pool"
  top: "inception_4c/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/pool_proj"
}
layer {
  name: "inception_4c/output"
  type: "Concat"
  bottom: "inception_4c/1x1"
  bottom: "inception_4c/3x3"
  bottom: "inception_4c/5x5"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/output"
}

layer {
  name: "inception_4d/1x1"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_1x1"
  type: "ReLU"
  bottom: "inception_4d/1x1"
  top: "inception_4d/1x1"
}
layer {
  name: "inception_4d/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 144
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3_reduce"
}
layer {
  name: "inception_4d/3x3"
  type: "Convolution"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 288
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3"
  type: "ReLU"
  bottom: "inception_4d/3x3"
  top: "inception_4d/3x3"
}
layer {
  name: "inception_4d/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5_reduce"
}
layer {
  name: "inception_4d/5x5"
  type: "Convolution"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5"
  type: "ReLU"
  bottom: "inception_4d/5x5"
  top: "inception_4d/5x5"
}
layer {
  name: "inception_4d/pool"
  type: "Pooling"
  bottom: "inception_4c/output"
  top: "inception_4d/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4d/pool_proj"
  type: "Convolution"
  bottom: "inception_4d/pool"
  top: "inception_4d/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/pool_proj"
}
layer {
  name: "inception_4d/output"
  type: "Concat"
  bottom: "inception_4d/1x1"
  bottom: "inception_4d/3x3"
  bottom: "inception_4d/5x5"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/output"
}

layer {
  name: "inception_4e/1x1"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_1x1"
  type: "ReLU"
  bottom: "inception_4e/1x1"
  top: "inception_4e/1x1"
}
layer {
  name: "inception_4e/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3_reduce"
}
layer {
  name: "inception_4e/3x3"
  type: "Convolution"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3"
  type: "ReLU"
  bottom: "inception_4e/3x3"
  top: "inception_4e/3x3"
}
layer {
  name: "inception_4e/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5_reduce"
}
layer {
  name: "inception_4e/5x5"
  type: "Convolution"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5"
  type: "ReLU"
  bottom: "inception_4e/5x5"
  top: "inception_4e/5x5"
}
layer {
  name: "inception_4e/pool"
  type: "Pooling"
  bottom: "inception_4d/output"
  top: "inception_4e/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4e/pool_proj"
  type: "Convolution"
  bottom: "inception_4e/pool"
  top: "inception_4e/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/pool_proj"
}
layer {
  name: "inception_4e/output"
  type: "Concat"
  bottom: "inception_4e/1x1"
  bottom: "inception_4e/3x3"
  bottom: "inception_4e/5x5"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/output"
}



layer {
  name: "inception_5a/1x1"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_1x1"
  type: "ReLU"
  bottom: "inception_5a/1x1"
  top: "inception_5a/1x1"
}

layer {
  name: "inception_5a/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3_reduce"
}

layer {
  name: "inception_5a/3x3"
  type: "Convolution"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3"
  type: "ReLU"
  bottom: "inception_5a/3x3"
  top: "inception_5a/3x3"
}
layer {
  name: "inception_5a/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5_reduce"
}
layer {
  name: "inception_5a/5x5"
  type: "Convolution"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5"
  type: "ReLU"
  bottom: "inception_5a/5x5"
  top: "inception_5a/5x5"
}
layer {
  name: "inception_5a/pool"
  type: "Pooling"
  bottom: "inception_4e/output"
  top: "inception_5a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5a/pool_proj"
  type: "Convolution"
  bottom: "inception_5a/pool"
  top: "inception_5a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/pool_proj"
}
layer {
  name: "inception_5a/output"
  type: "Concat"
  bottom: "inception_5a/1x1"
  bottom: "inception_5a/3x3"
  bottom: "inception_5a/5x5"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/output"
}

layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 1
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "inception_5a/output"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/pool_proj"
}
layer {
  name: "inception_5b/output"
  type: "Concat"
  bottom: "inception_5b/1x1"
  bottom: "inception_5b/3x3"
  bottom: "inception_5b/5x5"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/output"
}
layer {
  name: "pool5/drop_s1"
  type: "Dropout"
  bottom: "inception_5b/output"
  top: "pool5/drop_s1"
  dropout_param {
    dropout_ratio: 0.4
  }
}
layer {
  name: "cvg/classifier"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "cvg/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 1
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}
layer {
  name: "coverage/sig"
  type: "Sigmoid"
  bottom: "cvg/classifier"
  top: "coverage"
}
layer {
  name: "bbox/regressor"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "bboxes"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 4
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}

######################################################################
# End of convolutional network
######################################################################

# Convert bboxes
layer {
  name: "bbox_mask"
  type: "Eltwise"
  bottom: "bboxes"
  bottom: "coverage-block"
  top: "bboxes-masked"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bbox-norm"
  type: "Eltwise"
  bottom: "bboxes-masked"
  bottom: "size-block"
  top: "bboxes-masked-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "bbox-obj-norm"
  type: "Eltwise"
  bottom: "bboxes-masked-norm"
  bottom: "obj-block"
  top: "bboxes-obj-masked-norm"
  eltwise_param {
    operation: PROD
  }
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}

# Loss layers
layer {
  name: "bbox_loss"
  type: "L1Loss"
  bottom: "bboxes-obj-masked-norm"
  bottom: "bbox-obj-label-norm"
  top: "loss_bbox"
  loss_weight: 2
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}
layer {
  name: "coverage_loss"
  type: "EuclideanLoss"
  bottom: "coverage"
  bottom: "coverage-label"
  top: "loss_coverage"
  include { phase: TRAIN }
  include { phase: TEST stage: "val" }
}

# Cluster bboxes
layer {
    type: 'Python'
    name: 'cluster'
    bottom: 'coverage'
    bottom: 'bboxes'
    top: 'bbox-list'
    python_param {
        module: 'caffe.layers.detectnet.clustering'
        layer: 'ClusterDetections'
        param_str : '640, 640, 16, 0.6, 2, 0.02, 22, 1'
    }
    include: { phase: TEST }
}

# Calculate mean average precision
layer {
  type: 'Python'
  name: 'cluster_gt'
  bottom: 'coverage-label'
  bottom: 'bbox-label'
  top: 'bbox-list-label'
  python_param {
      module: 'caffe.layers.detectnet.clustering'
      layer: 'ClusterGroundtruth'
      param_str : '640, 640, 16, 1'
  }
  include: { phase: TEST stage: "val" }
}
layer {
    type: 'Python'
    name: 'score'
    bottom: 'bbox-list-label'
    bottom: 'bbox-list'
    top: 'bbox-list-scored'
    python_param {
        module: 'caffe.layers.detectnet.mean_ap'
        layer: 'ScoreDetections'
    }
    include: { phase: TEST stage: "val" }
}
layer {
    type: 'Python'
    name: 'mAP'
    bottom: 'bbox-list-scored'
    top: 'mAP'
    top: 'precision'
    top: 'recall'
    python_param {
        module: 'caffe.layers.detectnet.mean_ap'
        layer: 'mAP'
        param_str : '640, 640, 16'
    }
    include: { phase: TEST stage: "val" }
}

and here is the caffemodel: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

Hi doruk8,
your protofile can’t be parsed by our TenrsorRT, could you use following command to make sure protofile can be parsed correct?

nvidia@tegra-ubuntu:~/morgan/wayne/tegra_multimedia_api/data/Model/resnet10-old$ /usr/src/tensorrt/bin/giexec --deploy=customer.prototxt --output=bbox/regressor --half2 --batch=1
deploy: customer.prototxt
output: bbox/regressor
half2
batch: 1
[libprotobuf ERROR google/protobuf/text_format.cc:298] Error parsing text-format ditcaffe.NetParameter: 72:30: Message type “ditcaffe.LayerParameter” has no field named “detectnet_groundtruth_param”.
Could not parse deploy file
Engine could not be created
Engine could not be created

Thanks
wayne zhu

Sorry for late reply. I’ve tried the command you mentioned and I got the same result so I’ve changed the model to ped100 model included under jetson-inference repo of dusty-nv and I’ve made a few changes on model then fed your command with it. This is the result I am getting right now:

/usr/src/tensorrt/bin/giexec --deploy=deploy.prototxt --output=bbox/regressor --half2 --batch=1
deploy: deploy.prototxt
output: bbox/regressor
half2
batch: 1
Input “data”: 3x512x1024
Output “bbox/regressor”: 4x32x64
name=data, bindingIndex=0, buffers.size()=2
name=bbox/regressor, bindingIndex=1, buffers.size()=2
Average over 10 runs is 52.5085 ms.
Average over 10 runs is 45.6385 ms.
Average over 10 runs is 45.589 ms.
Average over 10 runs is 45.6846 ms.
Average over 10 runs is 45.6238 ms.
Average over 10 runs is 45.6285 ms.
Average over 10 runs is 45.6679 ms.
Average over 10 runs is 45.5692 ms.
Average over 10 runs is 45.566 ms.
Average over 10 runs is 45.5034 ms.

Then I’ve fed this command with the default DeepStream model Resnet-18. Here is the result of default DeepStream model:

/usr/src/tensorrt/bin/giexec --deploy=ResNet_18_threeClass_VGA_deploy_pruned.prototxt --output=Layer11_bbox --half2 --batch=1
deploy: ResNet_18_threeClass_VGA_deploy_pruned.prototxt
output: Layer11_bbox
half2
batch: 1
Input “data”: 3x368x640
Output “Layer11_bbox”: 12x23x40
name=data, bindingIndex=0, buffers.size()=2
name=Layer11_bbox, bindingIndex=1, buffers.size()=2
Average over 10 runs is 40.2628 ms.
Average over 10 runs is 14.6118 ms.
Average over 10 runs is 14.7133 ms.
Average over 10 runs is 14.738 ms.
Average over 10 runs is 14.6577 ms.
Average over 10 runs is 14.6635 ms.
Average over 10 runs is 14.7344 ms.
Average over 10 runs is 14.7653 ms.
Average over 10 runs is 14.7213 ms.
Average over 10 runs is 14.6916 ms.

Now when I run DeepStream with the custom model which TensorRT parsed correctly (named as deploy.prototxt), DeepStream generates cache file and opens the camera, displays the live webcam stream but no bounding box. I think some changes should be made in config file you pass to DeepStream but I don’t know how to configure it according to DetectNet ped100 model. I would like to know your ideas about it. Thanks in advance. Here is the deploy.prototxt:

input: "data"
input_shape {
  dim: 1
  dim: 3
  dim: 512
  dim: 1024
}
layer {
  name: "deploy_transform"
  type: "Power"
  bottom: "data"
  top: "transformed_data"
  power_param {
    shift: 0.0
  }
}
layer {
  name: "conv1/7x7_s2"
  type: "Convolution"
  bottom: "transformed_data"
  top: "conv1/7x7_s2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv1/relu_7x7"
  type: "ReLU"
  bottom: "conv1/7x7_s2"
  top: "conv1/7x7_s2"
}
layer {
  name: "pool1/3x3_s2"
  type: "Pooling"
  bottom: "conv1/7x7_s2"
  top: "pool1/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "pool1/norm1"
  type: "LRN"
  bottom: "pool1/3x3_s2"
  top: "pool1/norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2/3x3_reduce"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "conv2/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv2/relu_3x3_reduce"
  type: "ReLU"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3_reduce"
}
layer {
  name: "conv2/3x3"
  type: "Convolution"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "conv2/relu_3x3"
  type: "ReLU"
  bottom: "conv2/3x3"
  top: "conv2/3x3"
}
layer {
  name: "conv2/norm2"
  type: "LRN"
  bottom: "conv2/3x3"
  top: "conv2/norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2/3x3_s2"
  type: "Pooling"
  bottom: "conv2/norm2"
  top: "pool2/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_3a/1x1"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_1x1"
  type: "ReLU"
  bottom: "inception_3a/1x1"
  top: "inception_3a/1x1"
}
layer {
  name: "inception_3a/3x3_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3_reduce"
}
layer {
  name: "inception_3a/3x3"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_3x3"
  type: "ReLU"
  bottom: "inception_3a/3x3"
  top: "inception_3a/3x3"
}
layer {
  name: "inception_3a/5x5_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5_reduce"
}
layer {
  name: "inception_3a/5x5"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5"
  type: "ReLU"
  bottom: "inception_3a/5x5"
  top: "inception_3a/5x5"
}
layer {
  name: "inception_3a/pool"
  type: "Pooling"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3a/pool_proj"
  type: "Convolution"
  bottom: "inception_3a/pool"
  top: "inception_3a/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/pool_proj"
}
layer {
  name: "inception_3a/output"
  type: "Concat"
  bottom: "inception_3a/1x1"
  bottom: "inception_3a/3x3"
  bottom: "inception_3a/5x5"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/output"
}
layer {
  name: "inception_3b/1x1"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_1x1"
  type: "ReLU"
  bottom: "inception_3b/1x1"
  top: "inception_3b/1x1"
}
layer {
  name: "inception_3b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3_reduce"
}
layer {
  name: "inception_3b/3x3"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3"
  type: "ReLU"
  bottom: "inception_3b/3x3"
  top: "inception_3b/3x3"
}
layer {
  name: "inception_3b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5_reduce"
}
layer {
  name: "inception_3b/5x5"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5"
  type: "ReLU"
  bottom: "inception_3b/5x5"
  top: "inception_3b/5x5"
}
layer {
  name: "inception_3b/pool"
  type: "Pooling"
  bottom: "inception_3a/output"
  top: "inception_3b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj"
  type: "Convolution"
  bottom: "inception_3b/pool"
  top: "inception_3b/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/pool_proj"
}
layer {
  name: "inception_3b/output"
  type: "Concat"
  bottom: "inception_3b/1x1"
  bottom: "inception_3b/3x3"
  bottom: "inception_3b/5x5"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/output"
}
layer {
  name: "pool3/3x3_s2"
  type: "Pooling"
  bottom: "inception_3b/output"
  top: "pool3/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "inception_4a/1x1"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_1x1"
  type: "ReLU"
  bottom: "inception_4a/1x1"
  top: "inception_4a/1x1"
}
layer {
  name: "inception_4a/3x3_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3_reduce"
}
layer {
  name: "inception_4a/3x3"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_3x3"
  type: "ReLU"
  bottom: "inception_4a/3x3"
  top: "inception_4a/3x3"
}
layer {
  name: "inception_4a/5x5_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5_reduce"
}
layer {
  name: "inception_4a/5x5"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5"
  type: "ReLU"
  bottom: "inception_4a/5x5"
  top: "inception_4a/5x5"
}
layer {
  name: "inception_4a/pool"
  type: "Pooling"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj"
  type: "Convolution"
  bottom: "inception_4a/pool"
  top: "inception_4a/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/pool_proj"
}
layer {
  name: "inception_4a/output"
  type: "Concat"
  bottom: "inception_4a/1x1"
  bottom: "inception_4a/3x3"
  bottom: "inception_4a/5x5"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/output"
}
layer {
  name: "inception_4b/1x1"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_1x1"
  type: "ReLU"
  bottom: "inception_4b/1x1"
  top: "inception_4b/1x1"
}
layer {
  name: "inception_4b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3_reduce"
}
layer {
  name: "inception_4b/3x3"
  type: "Convolution"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 224
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3"
  type: "ReLU"
  bottom: "inception_4b/3x3"
  top: "inception_4b/3x3"
}
layer {
  name: "inception_4b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5_reduce"
}
layer {
  name: "inception_4b/5x5"
  type: "Convolution"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5"
  type: "ReLU"
  bottom: "inception_4b/5x5"
  top: "inception_4b/5x5"
}
layer {
  name: "inception_4b/pool"
  type: "Pooling"
  bottom: "inception_4a/output"
  top: "inception_4b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4b/pool_proj"
  type: "Convolution"
  bottom: "inception_4b/pool"
  top: "inception_4b/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/pool_proj"
}
layer {
  name: "inception_4b/output"
  type: "Concat"
  bottom: "inception_4b/1x1"
  bottom: "inception_4b/3x3"
  bottom: "inception_4b/5x5"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/output"
}
layer {
  name: "inception_4c/1x1"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_1x1"
  type: "ReLU"
  bottom: "inception_4c/1x1"
  top: "inception_4c/1x1"
}
layer {
  name: "inception_4c/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3_reduce"
}
layer {
  name: "inception_4c/3x3"
  type: "Convolution"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_3x3"
  type: "ReLU"
  bottom: "inception_4c/3x3"
  top: "inception_4c/3x3"
}
layer {
  name: "inception_4c/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5_reduce"
}
layer {
  name: "inception_4c/5x5"
  type: "Convolution"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5"
  type: "ReLU"
  bottom: "inception_4c/5x5"
  top: "inception_4c/5x5"
}
layer {
  name: "inception_4c/pool"
  type: "Pooling"
  bottom: "inception_4b/output"
  top: "inception_4c/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4c/pool_proj"
  type: "Convolution"
  bottom: "inception_4c/pool"
  top: "inception_4c/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/pool_proj"
}
layer {
  name: "inception_4c/output"
  type: "Concat"
  bottom: "inception_4c/1x1"
  bottom: "inception_4c/3x3"
  bottom: "inception_4c/5x5"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/output"
}
layer {
  name: "inception_4d/1x1"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_1x1"
  type: "ReLU"
  bottom: "inception_4d/1x1"
  top: "inception_4d/1x1"
}
layer {
  name: "inception_4d/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 144
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3_reduce"
}
layer {
  name: "inception_4d/3x3"
  type: "Convolution"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 288
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3"
  type: "ReLU"
  bottom: "inception_4d/3x3"
  top: "inception_4d/3x3"
}
layer {
  name: "inception_4d/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5_reduce"
}
layer {
  name: "inception_4d/5x5"
  type: "Convolution"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5"
  type: "ReLU"
  bottom: "inception_4d/5x5"
  top: "inception_4d/5x5"
}
layer {
  name: "inception_4d/pool"
  type: "Pooling"
  bottom: "inception_4c/output"
  top: "inception_4d/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4d/pool_proj"
  type: "Convolution"
  bottom: "inception_4d/pool"
  top: "inception_4d/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/pool_proj"
}
layer {
  name: "inception_4d/output"
  type: "Concat"
  bottom: "inception_4d/1x1"
  bottom: "inception_4d/3x3"
  bottom: "inception_4d/5x5"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/output"
}
layer {
  name: "inception_4e/1x1"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_1x1"
  type: "ReLU"
  bottom: "inception_4e/1x1"
  top: "inception_4e/1x1"
}
layer {
  name: "inception_4e/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3_reduce"
}
layer {
  name: "inception_4e/3x3"
  type: "Convolution"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3"
  type: "ReLU"
  bottom: "inception_4e/3x3"
  top: "inception_4e/3x3"
}
layer {
  name: "inception_4e/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5_reduce"
}
layer {
  name: "inception_4e/5x5"
  type: "Convolution"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5"
  type: "ReLU"
  bottom: "inception_4e/5x5"
  top: "inception_4e/5x5"
}
layer {
  name: "inception_4e/pool"
  type: "Pooling"
  bottom: "inception_4d/output"
  top: "inception_4e/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4e/pool_proj"
  type: "Convolution"
  bottom: "inception_4e/pool"
  top: "inception_4e/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/pool_proj"
}
layer {
  name: "inception_4e/output"
  type: "Concat"
  bottom: "inception_4e/1x1"
  bottom: "inception_4e/3x3"
  bottom: "inception_4e/5x5"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/output"
}
layer {
  name: "inception_5a/1x1"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_1x1"
  type: "ReLU"
  bottom: "inception_5a/1x1"
  top: "inception_5a/1x1"
}
layer {
  name: "inception_5a/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3_reduce"
}
layer {
  name: "inception_5a/3x3"
  type: "Convolution"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3"
  type: "ReLU"
  bottom: "inception_5a/3x3"
  top: "inception_5a/3x3"
}
layer {
  name: "inception_5a/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5_reduce"
}
layer {
  name: "inception_5a/5x5"
  type: "Convolution"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5"
  type: "ReLU"
  bottom: "inception_5a/5x5"
  top: "inception_5a/5x5"
}
layer {
  name: "inception_5a/pool"
  type: "Pooling"
  bottom: "inception_4e/output"
  top: "inception_5a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5a/pool_proj"
  type: "Convolution"
  bottom: "inception_5a/pool"
  top: "inception_5a/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/pool_proj"
}
layer {
  name: "inception_5a/output"
  type: "Concat"
  bottom: "inception_5a/1x1"
  bottom: "inception_5a/3x3"
  bottom: "inception_5a/5x5"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/output"
}
layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "inception_5a/output"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/pool_proj"
}
layer {
  name: "inception_5b/output"
  type: "Concat"
  bottom: "inception_5b/1x1"
  bottom: "inception_5b/3x3"
  bottom: "inception_5b/5x5"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/output"
}
layer {
  name: "pool5/drop_s1"
  type: "Dropout"
  bottom: "inception_5b/output"
  top: "pool5/drop_s1"
  dropout_param {
    dropout_ratio: 0.4
  }
}
layer {
  name: "cvg/classifier"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "cvg/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 1
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}
layer {
  name: "bbox/regressor"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "bbox/regressor"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 4
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}

Hi doruk898,

Good to know you have succeed to run with your model.

Have you write your parse function for your network?

I mean in config file:
parse-func=4 //it will finally call to a parser function
If you use specific model, you need write this function.

Thanks
wayne zhu

Yes but there is one problem about that. When I run the gst-inspect-1.0 nvcaffegie command, it gives
parse-func : Detector BBOX parse function type
flags: readable, writable, changeable only in NULL or READY state
Enum “GstNvCaffeDetectorParseFuncType” Default: 1, “Googlenet parse function”
(0): Custom parse function - custom parse
(1): Googlenet parse function - googlenet
(2): Nvidia model type 0 parse function - nv0
(3): Nvidia model type 1 parse function - nv1
(4): Nvidia model resnet parse function - resnet

Since the DetectNet model derivative of GoogleNet, I’m using parse-func=1 in my config file but it throws error. However if I run my config file with parse-func=4, no problem. I think my model works but no bounding box. This is my primary-gie section:

[primary-gie]
enable=1
net-scale-factor=0.0039215697906911373
model-file=file:///home/nvidia/tegra_multimedia_api/data/Model/GoogleNet_one_class/snapshot_iter_70800.caffemodel
proto-file=file:///home/nvidia/tegra_multimedia_api/data/Model/GoogleNet_one_class/deploy.prototxt
#model-cache=file:///home/nvidia/tegra_multimedia_api/data/Model/GoogleNet_one_class/snapshot_iter_70800.caffemodel_b2_fp16.cache
labelfile-path=file:///home/nvidia/Model/ResNet_18/labels.txt
#labelfile-path=file:///home/nvidia/jetson-inference/data/networks/ilsvrc12_synset_words.txt

net-stride=16
batch-size=2
#bbox-bg-color0=0;1;0;0.2
#bbox-bg-color1=0;1;1;0.2
#bbox-bg-color2=0;1;1;0.2
#bbox-bg-color3=1;0;0;0.2
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;1;1;1
bbox-border-color3=0;1;0;1
num-classes=4
class-thresholds=0.2;0.2;0.2;0.2
class-eps=0.1;0.1;0.1;0.1
class-group-thresholds=3;3;3;3
color-format=0
roi-top-offset=0;0
roi-bottom-offset=0;0
detected-min-w=0;0
detected-min-h=0;0
detected-max-w=1920;100;1920;1920
detected-max-h=1080;1080;1080;1080
interval=1

-2 for all; -1 for none;

To set multiple class id’s use format as “1;2;0”

detect-color-class-ids=0;
gie-unique-id=1
parse-func=4
is-classifier=0

output-bbox-name=bbox/regressor
output-blob-names=cvg/classifier

I’m not sure if the problem I’m having is related to labels or need of changes in config file or is my model completely wrong. This is exactly what my problem is. I even used built-in GoogleNet model which included in Tegra Multimedia API, still no result. Do you think it is because of parsing function tensorrt uses?

Hi,
Could you share your config file with built-in GooglNet model? so I can have a test on my side.

Thanks
wayne zhu

Hi, I just set parse-func=4 and commented model-cache parameter to reproduce cache file. It crated the cache file for GoogleNet model and now I’m able to see some bounding boxes that produced by GoogleNet model below. However, result is worse than ResNet-18 model which comes with DeepStream SDK as default and very low fps (around 5 fps). Here is the GoogleNet model I’ve tried:

name: "googlenet_bn"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 540
input_dim: 960
layer {
  name: "conv1/7x7_s2"
  type: "Convolution"
  bottom: "data"
  top: "conv1/7x7_s2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv1/relu_7x7"
  type: "ReLU"
  bottom: "conv1/7x7_s2"
  top: "conv1/7x7_s2"
}

layer {
  name: "pool1/3x3_s2"
  type: "Pooling"
  bottom: "conv1/7x7_s2"
  top: "pool1/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "pool1/norm1"
  type: "LRN"
  bottom: "pool1/3x3_s2"
  top: "pool1/norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "conv2/3x3_reduce"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "conv2/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_3x3_reduce"
  type: "ReLU"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3_reduce"
}

layer {
  name: "conv2/3x3"
  type: "Convolution"
  bottom: "conv2/3x3_reduce"
  top: "conv2/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_3x3"
  type: "ReLU"
  bottom: "conv2/3x3"
  top: "conv2/3x3"
}

layer {
  name: "conv2/norm2"
  type: "LRN"
  bottom: "conv2/3x3"
  top: "conv2/norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "pool2/3x3_s2"
  type: "Pooling"
  bottom: "conv2/norm2"
  top: "pool2/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "inception_3a/1x1"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_1x1"
  type: "ReLU"
  bottom: "inception_3a/1x1"
  top: "inception_3a/1x1"
}

layer {
  name: "inception_3a/3x3_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3_reduce"
}

layer {
  name: "inception_3a/3x3"
  type: "Convolution"
  bottom: "inception_3a/3x3_reduce"
  top: "inception_3a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3a/relu_3x3"
  type: "ReLU"
  bottom: "inception_3a/3x3"
  top: "inception_3a/3x3"
}

layer {
  name: "inception_3a/5x5_reduce"
  type: "Convolution"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5_reduce"
}
layer {
  name: "inception_3a/5x5"
  type: "Convolution"
  bottom: "inception_3a/5x5_reduce"
  top: "inception_3a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_5x5"
  type: "ReLU"
  bottom: "inception_3a/5x5"
  top: "inception_3a/5x5"
}

layer {
  name: "inception_3a/pool"
  type: "Pooling"
  bottom: "pool2/3x3_s2"
  top: "inception_3a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}

layer {
  name: "inception_3a/pool_proj"
  type: "Convolution"
  bottom: "inception_3a/pool"
  top: "inception_3a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/pool_proj"
}

layer {
  name: "inception_3a/output"
  type: "Concat"
  bottom: "inception_3a/1x1"
  bottom: "inception_3a/3x3"
  bottom: "inception_3a/5x5"
  bottom: "inception_3a/pool_proj"
  top: "inception_3a/output"
}

layer {
  name: "inception_3b/1x1"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_3b/relu_1x1"
  type: "ReLU"
  bottom: "inception_3b/1x1"
  top: "inception_3b/1x1"
}

layer {
  name: "inception_3b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3_reduce"
}
layer {
  name: "inception_3b/3x3"
  type: "Convolution"
  bottom: "inception_3b/3x3_reduce"
  top: "inception_3b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_3x3"
  type: "ReLU"
  bottom: "inception_3b/3x3"
  top: "inception_3b/3x3"
}

layer {
  name: "inception_3b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_3a/output"
  top: "inception_3b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5_reduce"
}
layer {
  name: "inception_3b/5x5"
  type: "Convolution"
  bottom: "inception_3b/5x5_reduce"
  top: "inception_3b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_5x5"
  type: "ReLU"
  bottom: "inception_3b/5x5"
  top: "inception_3b/5x5"
}

layer {
  name: "inception_3b/pool"
  type: "Pooling"
  bottom: "inception_3a/output"
  top: "inception_3b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_3b/pool_proj"
  type: "Convolution"
  bottom: "inception_3b/pool"
  top: "inception_3b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_3b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/pool_proj"
}
layer {
  name: "inception_3b/output"
  type: "Concat"
  bottom: "inception_3b/1x1"
  bottom: "inception_3b/3x3"
  bottom: "inception_3b/5x5"
  bottom: "inception_3b/pool_proj"
  top: "inception_3b/output"
}

layer {
  name: "pool3/3x3_s2"
  type: "Pooling"
  bottom: "inception_3b/output"
  top: "pool3/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "inception_4a/1x1"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_1x1"
  type: "ReLU"
  bottom: "inception_4a/1x1"
  top: "inception_4a/1x1"
}

layer {
  name: "inception_4a/3x3_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3_reduce"
}

layer {
  name: "inception_4a/3x3"
  type: "Convolution"
  bottom: "inception_4a/3x3_reduce"
  top: "inception_4a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 208
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4a/relu_3x3"
  type: "ReLU"
  bottom: "inception_4a/3x3"
  top: "inception_4a/3x3"
}

layer {
  name: "inception_4a/5x5_reduce"
  type: "Convolution"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5_reduce"
}
layer {
  name: "inception_4a/5x5"
  type: "Convolution"
  bottom: "inception_4a/5x5_reduce"
  top: "inception_4a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_5x5"
  type: "ReLU"
  bottom: "inception_4a/5x5"
  top: "inception_4a/5x5"
}
layer {
  name: "inception_4a/pool"
  type: "Pooling"
  bottom: "pool3/3x3_s2"
  top: "inception_4a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4a/pool_proj"
  type: "Convolution"
  bottom: "inception_4a/pool"
  top: "inception_4a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/pool_proj"
}
layer {
  name: "inception_4a/output"
  type: "Concat"
  bottom: "inception_4a/1x1"
  bottom: "inception_4a/3x3"
  bottom: "inception_4a/5x5"
  bottom: "inception_4a/pool_proj"
  top: "inception_4a/output"
}

layer {
  name: "inception_4b/1x1"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4b/relu_1x1"
  type: "ReLU"
  bottom: "inception_4b/1x1"
  top: "inception_4b/1x1"
}
layer {
  name: "inception_4b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3_reduce"
}
layer {
  name: "inception_4b/3x3"
  type: "Convolution"
  bottom: "inception_4b/3x3_reduce"
  top: "inception_4b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 224
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_3x3"
  type: "ReLU"
  bottom: "inception_4b/3x3"
  top: "inception_4b/3x3"
}
layer {
  name: "inception_4b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4a/output"
  top: "inception_4b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5_reduce"
}
layer {
  name: "inception_4b/5x5"
  type: "Convolution"
  bottom: "inception_4b/5x5_reduce"
  top: "inception_4b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_5x5"
  type: "ReLU"
  bottom: "inception_4b/5x5"
  top: "inception_4b/5x5"
}
layer {
  name: "inception_4b/pool"
  type: "Pooling"
  bottom: "inception_4a/output"
  top: "inception_4b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4b/pool_proj"
  type: "Convolution"
  bottom: "inception_4b/pool"
  top: "inception_4b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/pool_proj"
}
layer {
  name: "inception_4b/output"
  type: "Concat"
  bottom: "inception_4b/1x1"
  bottom: "inception_4b/3x3"
  bottom: "inception_4b/5x5"
  bottom: "inception_4b/pool_proj"
  top: "inception_4b/output"
}

layer {
  name: "inception_4c/1x1"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4c/relu_1x1"
  type: "ReLU"
  bottom: "inception_4c/1x1"
  top: "inception_4c/1x1"
}

layer {
  name: "inception_4c/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_4c/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3_reduce"
}
layer {
  name: "inception_4c/3x3"
  type: "Convolution"
  bottom: "inception_4c/3x3_reduce"
  top: "inception_4c/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_3x3"
  type: "ReLU"
  bottom: "inception_4c/3x3"
  top: "inception_4c/3x3"
}
layer {
  name: "inception_4c/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4b/output"
  top: "inception_4c/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5_reduce"
}
layer {
  name: "inception_4c/5x5"
  type: "Convolution"
  bottom: "inception_4c/5x5_reduce"
  top: "inception_4c/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_5x5"
  type: "ReLU"
  bottom: "inception_4c/5x5"
  top: "inception_4c/5x5"
}
layer {
  name: "inception_4c/pool"
  type: "Pooling"
  bottom: "inception_4b/output"
  top: "inception_4c/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4c/pool_proj"
  type: "Convolution"
  bottom: "inception_4c/pool"
  top: "inception_4c/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4c/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/pool_proj"
}
layer {
  name: "inception_4c/output"
  type: "Concat"
  bottom: "inception_4c/1x1"
  bottom: "inception_4c/3x3"
  bottom: "inception_4c/5x5"
  bottom: "inception_4c/pool_proj"
  top: "inception_4c/output"
}

layer {
  name: "inception_4d/1x1"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 112
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_1x1"
  type: "ReLU"
  bottom: "inception_4d/1x1"
  top: "inception_4d/1x1"
}
layer {
  name: "inception_4d/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 144
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3_reduce"
}
layer {
  name: "inception_4d/3x3"
  type: "Convolution"
  bottom: "inception_4d/3x3_reduce"
  top: "inception_4d/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 288
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_3x3"
  type: "ReLU"
  bottom: "inception_4d/3x3"
  top: "inception_4d/3x3"
}
layer {
  name: "inception_4d/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4c/output"
  top: "inception_4d/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5_reduce"
}
layer {
  name: "inception_4d/5x5"
  type: "Convolution"
  bottom: "inception_4d/5x5_reduce"
  top: "inception_4d/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_5x5"
  type: "ReLU"
  bottom: "inception_4d/5x5"
  top: "inception_4d/5x5"
}
layer {
  name: "inception_4d/pool"
  type: "Pooling"
  bottom: "inception_4c/output"
  top: "inception_4d/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4d/pool_proj"
  type: "Convolution"
  bottom: "inception_4d/pool"
  top: "inception_4d/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4d/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/pool_proj"
}
layer {
  name: "inception_4d/output"
  type: "Concat"
  bottom: "inception_4d/1x1"
  bottom: "inception_4d/3x3"
  bottom: "inception_4d/5x5"
  bottom: "inception_4d/pool_proj"
  top: "inception_4d/output"
}

layer {
  name: "inception_4e/1x1"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_1x1"
  type: "ReLU"
  bottom: "inception_4e/1x1"
  top: "inception_4e/1x1"
}
layer {
  name: "inception_4e/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3_reduce"
}
layer {
  name: "inception_4e/3x3"
  type: "Convolution"
  bottom: "inception_4e/3x3_reduce"
  top: "inception_4e/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_3x3"
  type: "ReLU"
  bottom: "inception_4e/3x3"
  top: "inception_4e/3x3"
}
layer {
  name: "inception_4e/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4d/output"
  top: "inception_4e/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5_reduce"
}
layer {
  name: "inception_4e/5x5"
  type: "Convolution"
  bottom: "inception_4e/5x5_reduce"
  top: "inception_4e/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_5x5"
  type: "ReLU"
  bottom: "inception_4e/5x5"
  top: "inception_4e/5x5"
}
layer {
  name: "inception_4e/pool"
  type: "Pooling"
  bottom: "inception_4d/output"
  top: "inception_4e/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_4e/pool_proj"
  type: "Convolution"
  bottom: "inception_4e/pool"
  top: "inception_4e/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_4e/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/pool_proj"
}
layer {
  name: "inception_4e/output"
  type: "Concat"
  bottom: "inception_4e/1x1"
  bottom: "inception_4e/3x3"
  bottom: "inception_4e/5x5"
  bottom: "inception_4e/pool_proj"
  top: "inception_4e/output"
}

layer {
  name: "inception_5a/1x1"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_1x1"
  type: "ReLU"
  bottom: "inception_5a/1x1"
  top: "inception_5a/1x1"
}

layer {
  name: "inception_5a/3x3_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 160
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.09
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3_reduce"
}

layer {
  name: "inception_5a/3x3"
  type: "Convolution"
  bottom: "inception_5a/3x3_reduce"
  top: "inception_5a/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 320
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_3x3"
  type: "ReLU"
  bottom: "inception_5a/3x3"
  top: "inception_5a/3x3"
}
layer {
  name: "inception_5a/5x5_reduce"
  type: "Convolution"
  bottom: "inception_4e/output"
  top: "inception_5a/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.2
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5_reduce"
}
layer {
  name: "inception_5a/5x5"
  type: "Convolution"
  bottom: "inception_5a/5x5_reduce"
  top: "inception_5a/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_5x5"
  type: "ReLU"
  bottom: "inception_5a/5x5"
  top: "inception_5a/5x5"
}
layer {
  name: "inception_5a/pool"
  type: "Pooling"
  bottom: "inception_4e/output"
  top: "inception_5a/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5a/pool_proj"
  type: "Convolution"
  bottom: "inception_5a/pool"
  top: "inception_5a/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5a/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/pool_proj"
}
layer {
  name: "inception_5a/output"
  type: "Concat"
  bottom: "inception_5a/1x1"
  bottom: "inception_5a/3x3"
  bottom: "inception_5a/5x5"
  bottom: "inception_5a/pool_proj"
  top: "inception_5a/output"
}

layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 1
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_3x3"
  type: "ReLU"
  bottom: "inception_5b/3x3"
  top: "inception_5b/3x3"
}
layer {
  name: "inception_5b/5x5_reduce"
  type: "Convolution"
  bottom: "inception_5a/output"
  top: "inception_5b/5x5_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5_reduce"
  type: "ReLU"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5_reduce"
}
layer {
  name: "inception_5b/5x5"
  type: "Convolution"
  bottom: "inception_5b/5x5_reduce"
  top: "inception_5b/5x5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_5x5"
  type: "ReLU"
  bottom: "inception_5b/5x5"
  top: "inception_5b/5x5"
}
layer {
  name: "inception_5b/pool"
  type: "Pooling"
  bottom: "inception_5a/output"
  top: "inception_5b/pool"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
    pad: 1
  }
}
layer {
  name: "inception_5b/pool_proj"
  type: "Convolution"
  bottom: "inception_5b/pool"
  top: "inception_5b/pool_proj"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.1
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "inception_5b/relu_pool_proj"
  type: "ReLU"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/pool_proj"
}
layer {
  name: "inception_5b/output"
  type: "Concat"
  bottom: "inception_5b/1x1"
  bottom: "inception_5b/3x3"
  bottom: "inception_5b/5x5"
  bottom: "inception_5b/pool_proj"
  top: "inception_5b/output"
}

layer {
  name: "pool5/drop_s1"
  type: "Dropout"
  bottom: "inception_5b/output"
  top: "pool5/drop_s1"
  dropout_param {
    dropout_ratio: 0.4
  }
}

layer {
  name: "cvg/classifier"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "cvg/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}

layer {
  name: "bbox/regressor"
  type: "Convolution"
  bottom: "pool5/drop_s1"
  top: "bbox/regressor"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
      std: 0.03
    }
    bias_filler {
      type: "constant"
      value: 0.
    }
  }
}

layer {
  name: "upsample-cvg"
  type: "Deconvolution"
  bottom: "cvg/classifier"
  top: "cvg/tile"
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  convolution_param {
    num_output: 1
    kernel_size: 4
    stride: 4
  }
}

layer {
  name: "upsample-bbox"
  type: "Deconvolution"
  bottom: "bbox/regressor"
  top: "bboxes"
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  convolution_param {
    num_output: 4
    kernel_size: 4
    stride: 4
  }
}

layer {
  name: "coverage/sig"
  type: "Sigmoid"
  bottom: "cvg/tile"
  top: "coverage"
}

and here is my config file:

[application]
enable-perf-measurement=1
roi-marking=1
perf-measurement-interval-sec=5
gie-kitti-output-dir=/home/nvidia/kitti1/

0 = standalone; 1 = server; 2 = client

app-mode=0

[source0]
enable=1
#Type - 1=CameraCSi 2=CameraV4L2 3=URI
type=3
camera-width=1920
camera-height=1080
camera-fps-n=30
camera-fps-d=1
camera-csi-sensor-id=1 # Developer kit onboard kamera için (type=1)
camera-v4l2-dev-node=1 # USB kamera için (type=2)
uri=file:///home/nvidia/sample_720p.mp4

[sink0]
enable=1
#Type - 1=FakeSink 2=OverlaySink 3=EglSink 4=XvImageSink 5=File
type=2
display-id=0
offset-x=0
offset-y=0
width=0
height=0
sync=1
overlay-index=1
source-id=0

[sink1]
enable=0
#Type - 1=FakeSink 2=OverlaySink 3=EglSink 4=XvImageSink 5=File
type=5
#1=mp4 2=mkv
container=2
#1=h264 2=h265
codec=1
bitrate=10000000
#1=cbr 2=vbr
rc-mode=2
iframeinterval=30
#1=baseline 2=main 3=high
profile=3
output-file=out.mp4
source-id=0

[osd]
enable=1
osd-mode=2
border-width=7
text-size=10
text-color=1;2;3;1;
text-bg-color=0.3;0.3;0.3;1
font=Arial
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0;

[primary-gie]
enable=1
net-scale-factor=0.0039215697906911373
model-file=file:///home/nvidia/tegra_multimedia_api/data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel

proto-file=file:///home/nvidia/tegra_multimedia_api/data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt

model-cache=file:///home/nvidia/tegra_multimedia_api/data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel_b2_fp16.cache

labelfile-path=file:///home/nvidia/Model/ResNet_18/labels.txt

net-stride=16
batch-size=2
#bbox-bg-color0=0;1;0;0.2
#bbox-bg-color1=0;1;1;0.2
#bbox-bg-color2=0;1;1;0.2
#bbox-bg-color3=1;0;0;0.2
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;1;1;1
bbox-border-color3=0;1;0;1
num-classes=4
class-thresholds=0.2;0.2;0.2;0.2
class-eps=0.1;0.1;0.1;0.1
class-group-thresholds=3;3;3;3
color-format=0
roi-top-offset=0;0
roi-bottom-offset=0;0
detected-min-w=0;0
detected-min-h=0;0
detected-max-w=1920;100;1920;1920
detected-max-h=1080;1080;1080;1080
interval=1

-2 for all; -1 for none;

To set multiple class id’s use format as “1;2;0”

detect-color-class-ids=0;
gie-unique-id=1
parse-func=4
is-classifier=0

output-bbox-name=bbox/regressor
output-blob-names=cvg/classifier

Uncomment below lines for DBSCAN. EPS and minBoxes can be tuned for DBSCAN

#enable-dbscan=1
#class-minBoxes=4;4;4;4
#class-eps=0.7;0.7;0.7;0.7

Bit 0: Model decryption required

crypto-flags=0

[secondary-gie4]
enable=1
net-scale-factor=1
model-file=file:///home/nvidia/Model/ivaSecondary_VehicleTypes_V1/snapshot_iter_13740.caffemodel
proto-file=file:///home/nvidia/Model/ivaSecondary_VehicleTypes_V1/deploy.prototxt
model-cache=file:///home/nvidia/Model/ivaSecondary_VehicleTypes_V1/snapshot_iter_13740.caffemodel_b2_fp16.cache
labelfile-path=file:///home/nvidia/Model/ivaSecondary_VehicleTypes_V1/labels.txt
net-stride=16
batch-size=2
num-classes=6
detected-min-w=128
detected-min-h=128
detected-max-w=1920;100;1920;1920
detected-max-h=1080;1080;1080;1080
color-format=1
interval=0
gie-unique-id=4
operate-on-gie-id=1
operate-on-class-ids=2;
is-classifier=1
output-blob-names=softmax
offsets=73.00;77.55;88.9
sgie-async-mode=1
sec-class-threshold=0.51

[secondary-gie5]
enable=1
net-scale-factor=1
model-file=file:///home/nvidia/Model/IVA_secondary_carcolor_V1/CarColorPruned.caffemodel
proto-file=file:///home/nvidia/Model/IVA_secondary_carcolor_V1/deploy.prototxt
mean-file=file:///home/nvidia/Model/IVA_secondary_carcolor_V1/mean.ppm
model-cache=file:///home/nvidia/Model/IVA_secondary_carcolor_V1/CarColorPruned.caffemodel_b2_fp16.cache
labelfile-path=file:///home/nvidia/Model/IVA_secondary_carcolor_V1/labels.txt
net-stride=16
batch-size=2
detected-min-w=128
detected-min-h=128
detected-max-w=1920;100;1920;1920
detected-max-h=1080;1080;1080;1080
color-format=1
num-classes=12
interval=0
gie-unique-id=5
operate-on-gie-id=1
operate-on-class-ids=2;
is-classifier=1
output-blob-names=softmax
sgie-async-mode=1
sec-class-threshold=0.51

[secondary-gie6]
enable=1
net-scale-factor=1
model-file=file:///home/nvidia/Model/IVASecondary_Make_V1/snapshot_iter_6240.caffemodel
proto-file=file:///home/nvidia/Model/IVASecondary_Make_V1/deploy.prototxt
model-cache=file:///home/nvidia/Model/IVASecondary_Make_V1/snapshot_iter_6240.caffemodel_b2_fp16.cache
mean-file=file:///home/nvidia/Model/IVASecondary_Make_V1/mean.ppm
labelfile-path=file:///home/nvidia/Model/IVASecondary_Make_V1/labels.txt
net-stride=16
batch-size=2
num-classes=24
detected-min-w=128
detected-min-h=128
detected-max-w=1920;100;1920;1920
detected-max-h=1080;1080;1080;1080
color-format=1
interval=0
gie-unique-id=6
operate-on-gie-id=1
operate-on-class-ids=2;
is-classifier=1
output-blob-names=softmax
sgie-async-mode=1
sec-class-threshold=0.51
crypto-flags=0

[tracker]
enable=1
tracker-width=960
tracker-height=540

[tests]
file-loop-count=0
#0=send overlaps; 1=do not send overlaps
server-overlap-mode=1
#Fixed to 1 for diplay color in GUI mode
color-mode=1

On the other hand, I still think that there is some logical error about parse-func because gst-inspect-1.0 nvcaffgie command tells that “(1): Googlenet parse function - googlenet” but if give parse-func=1 in config file for DeepStream, it throws error and if give parse-func=4 no problem. Why is that?

Hi Dorek,
1, Looks your issue is accuracy issue, could you adjust your threshold in config file, then see result again?
2, I think we have release nvparsebbox_sources code, you can check that about parse function.

Thanks
wayne zhu

Hi Dorek,

Have you tried our suggestions?
Any result can be shared?

Thanks

Hi kayccc,

I am so sorry to reply too late. I couldn’t check this post because of other jobs I have.
Now I’m trying to build a detection model with SSD + MobileNet because the pre-trained models I have are too big for TX2. After I train the model and get a result I will be trying this model on DeepStream. So you can close this topic now and if I have further questions related to my custom model, I will create another topic. Is that okay?