I use 2GB jetson nano to run the segmentation example code in Jupyter notebook. I cannot finish the code and it will stop in out = net(inp)['out']
and pops up
Kernel Restarting
The kernel for jetbot/test-seg.ipynb appears to have died. It will restart automatically.
I check the memory usage, it uses roughly 18xx.
I am think if the memory is not enough?
How should I extend the memory?(I have already used swapfile)
and I am also thinking that I put everything into GPU, why the speed of processing is too slow?
The memory is used by CPU and GPU together?
How can I find the how much memory does GPU and CPU has?
The code is from
https://colab.research.google.com/github/spmallick/learnopencv/blob/master/PyTorch-Segmentation-torchvision/intro-seg.ipynb#scrollTo=shnC_YQLeQ1v
from torchvision import models
fcn = models.segmentation.fcn_resnet101(pretrained=True).eval()
fcn.to("cuda")
import numpy as np
# Define the helper function
def decode_segmap(image, nc=21):
label_colors = np.array([(0, 0, 0), # 0=background
# 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
(128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),
# 6=bus, 7=car, 8=cat, 9=chair, 10=cow
(0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0),
# 11=dining table, 12=dog, 13=horse, 14=motorbike, 15=person
(192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128),
# 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
(0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)])
r = np.zeros_like(image).astype(np.uint8)
g = np.zeros_like(image).astype(np.uint8)
b = np.zeros_like(image).astype(np.uint8)
for l in range(0, nc):
idx = image == l
r[idx] = label_colors[l, 0]
g[idx] = label_colors[l, 1]
b[idx] = label_colors[l, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as T
def segment(net, path, show_orig=True, dev='cuda'):
img = Image.open(path)
if show_orig: plt.imshow(img); plt.axis('off'); plt.show()
# Comment the Resize and CenterCrop for better inference results
trf = T.Compose([T.Resize(640),
#T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225])])
inp = trf(img).unsqueeze(0).to(dev)
print(1)
net= net.to(dev)
print(2)
out = net(inp)['out']
print(3)
om = torch.argmax(out.squeeze(), dim=0).detach().cpu().numpy()
print(4)
rgb = decode_segmap(om)
print(5)
plt.imshow(rgb); plt.axis('off'); plt.show()
I cannot finish this cell.(horse one). It will go to def segment(net, path, show_orig=True, dev='cuda'):
and stuck on out = net(inp)['out']
.
!wget -nv https://www.learnopencv.com/wp-content/uploads/2021/01/horse-segmentation.jpeg -O horse.png
segment(fcn, './horse.png')
Thank you so much!!!