Hi.
I get this error when inference with unet TLT and TAO. This is inference log:
Total params: 86,617,858
Trainable params: 86,096,002
Non-trainable params: 521,856
__________________________________________________________________________________________________
Traceback (most recent call last):
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 412, in <module>
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 408, in main
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 318, in run_experiment
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 278, in infer_unet
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 205, in run_inference_tlt
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 142, in visualize_masks
File "/root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/unet/scripts/inference.py", line 86, in overlay_seg_image
**AttributeError: 'NoneType' object has no attribute 'shape'**
This is while I have been using unet for almost 2 months and I have not got this error yet. This is my spec file:
random_seed: 42
model_config {
model_input_width: 640
model_input_height: 640
model_input_channels: 3
num_layers: 101
all_projections: true
arch: "resnet"
freeze_blocks: 0
freeze_blocks: 1
use_batch_norm: True
training_precision {
backend_floatx: FLOAT32
}
}
training_config {
batch_size: 2
epochs: 500
log_summary_steps: 499
checkpoint_interval: 5
loss: "cross_dice_sum"
learning_rate:0.0002
regularizer {
type: L2
weight: 3e-09
}
optimizer {
adam {
epsilon: 9.99999993923e-09
beta1: 0.899999976158
beta2: 0.999000012875
}
}
}
dataset_config {
dataset: "custom"
augment: False
augmentation_config {
spatial_augmentation {
hflip_probability : 0.5
vflip_probability : 0.5
crop_and_resize_prob : 0.5
}
brightness_augmentation {
delta: 0.2
}
}
input_image_type: "color"
train_images_path: "/workspace/tlt/results/tlt_unet_corrosion1000_resnet101/unpruned_model/corrosion_1000_temp/train/images/"
train_masks_path: "/workspace/tlt/results/tlt_unet_corrosion1000_resnet101/unpruned_model/corrosion_1000_temp/train/masks"
val_images_path: "/workspace/tlt/results/tlt_unet_corrosion1000_resnet101/unpruned_model/corrosion_1000_temp/val/images"
val_masks_path: "/workspace/tlt/results/tlt_unet_corrosion1000_resnet101/unpruned_model/corrosion_1000_temp/val/masks"
test_images_path: "/workspace/tlt/results/2/"
data_class_config {
target_classes {
name: "background"
mapping_class: "background"
label_id: 0
}
target_classes {
name: "foreground"
mapping_class: "foreground"
label_id: 255
}
}
}