I got how to use TLT 3.0 inside a docker container.
I needed to run TLT with just the lprnet command. No “tlt” preceeding “lprnet”.
Then I needed to give the local directories to the lprnet command.
!lprnet train --gpus=1 --gpu_index=$GPU_INDEX \
-e $LOCAL_SPECS_DIR/tutorial_spec.txt \
-r $LOCAL_EXPERIMENT_DIR/experiment_dir_unpruned \
-k $KEY \
-m $LOCAL_EXPERIMENT_DIR/pretrained_lprnet_baseline18/tlt_lprnet_vtrainable_v1.0/us_lprnet_baseline18_trainable.tlt
I also modified the data path in the spec file.
dataset_config {
data_sources: {
label_directory_path: "/data/tlt-experiments/data/openalpr/train/label"
image_directory_path: "/data/tlt-experiments/data/openalpr/train/image"
}
characters_list_file: "/workspace/tlt_cv_samples_v1.1.0/lprnet_debug/specs/us_lp_characters.txt"
validation_data_sources: {
label_directory_path: "/data/tlt-experiments/data/openalpr/val/label"
image_directory_path: "/data/tlt-experiments/data/openalpr/val/image"
}
}
It seemed that the h5py version in TLT 3.0 container was not good in my environment. So I reinstalled the h5py.
!pip3 show h5py
!pip3 uninstall h5py -y
!pip3 install h5py==2.10.0
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
Using TensorFlow backend.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/horovod/tensorflow/__init__.py:117: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
2021-07-09 05:36:27,971 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/horovod/tensorflow/__init__.py:117: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/horovod/tensorflow/__init__.py:143: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
2021-07-09 05:36:27,971 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/horovod/tensorflow/__init__.py:143: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
WARNING:tensorflow:From /opt/tlt/.cache/dazel/_dazel_tlt/2b81a5aac84a1d3b7a324f2a7a6f400b/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/lprnet/scripts/train.py:57: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
2021-07-09 05:36:28,111 [WARNING] tensorflow: From /opt/tlt/.cache/dazel/_dazel_tlt/2b81a5aac84a1d3b7a324f2a7a6f400b/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/lprnet/scripts/train.py:57: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
WARNING:tensorflow:From /opt/tlt/.cache/dazel/_dazel_tlt/2b81a5aac84a1d3b7a324f2a7a6f400b/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/lprnet/scripts/train.py:60: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
2021-07-09 05:36:28,111 [WARNING] tensorflow: From /opt/tlt/.cache/dazel/_dazel_tlt/2b81a5aac84a1d3b7a324f2a7a6f400b/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/lprnet/scripts/train.py:60: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
WARNING:tensorflow:From /opt/tlt/.cache/dazel/_dazel_tlt/2b81a5aac84a1d3b7a324f2a7a6f400b/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/lprnet/scripts/train.py:61: The name tf.keras.backend.set_session is deprecated. Please use tf.compat.v1.keras.backend.set_session instead.
2021-07-09 05:36:28,438 [WARNING] tensorflow: From /opt/tlt/.cache/dazel/_dazel_tlt/2b81a5aac84a1d3b7a324f2a7a6f400b/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/lprnet/scripts/train.py:61: The name tf.keras.backend.set_session is deprecated. Please use tf.compat.v1.keras.backend.set_session instead.
2021-07-09 05:36:28,438 [INFO] iva.lprnet.utils.spec_loader: Merging specification from /workspace/tlt_cv_samples_v1.1.0/lprnet_debug/specs/tutorial_spec.txt
2021-07-09 05:36:28,439 [INFO] __main__: Loading pretrained weights. This may take a while...
Initialize optimizer
Model: "lpnet_baseline_18"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
image_input (InputLayer) [(None, 3, 48, 96)] 0
__________________________________________________________________________________________________
tf_op_layer_Sum (TensorFlowOpLa [(None, 1, 48, 96)] 0 image_input[0][0]
__________________________________________________________________________________________________
conv1 (Conv2D) (None, 64, 48, 96) 640 tf_op_layer_Sum[0][0]
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization) (None, 64, 48, 96) 256 conv1[0][0]
__________________________________________________________________________________________________
re_lu (ReLU) (None, 64, 48, 96) 0 bn_conv1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 64, 48, 96) 0 re_lu[0][0]
__________________________________________________________________________________________________
res2a_branch2a (Conv2D) (None, 64, 48, 96) 36928 max_pooling2d[0][0]
__________________________________________________________________________________________________
bn2a_branch2a (BatchNormalizati (None, 64, 48, 96) 256 res2a_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_1 (ReLU) (None, 64, 48, 96) 0 bn2a_branch2a[0][0]
__________________________________________________________________________________________________
res2a_branch1 (Conv2D) (None, 64, 48, 96) 4160 max_pooling2d[0][0]
__________________________________________________________________________________________________
res2a_branch2b (Conv2D) (None, 64, 48, 96) 36928 re_lu_1[0][0]
__________________________________________________________________________________________________
bn2a_branch1 (BatchNormalizatio (None, 64, 48, 96) 256 res2a_branch1[0][0]
__________________________________________________________________________________________________
bn2a_branch2b (BatchNormalizati (None, 64, 48, 96) 256 res2a_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add (TensorFlowOpLa [(None, 64, 48, 96)] 0 bn2a_branch1[0][0]
bn2a_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_2 (ReLU) (None, 64, 48, 96) 0 tf_op_layer_add[0][0]
__________________________________________________________________________________________________
res2b_branch2a (Conv2D) (None, 64, 48, 96) 36928 re_lu_2[0][0]
__________________________________________________________________________________________________
bn2b_branch2a (BatchNormalizati (None, 64, 48, 96) 256 res2b_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_3 (ReLU) (None, 64, 48, 96) 0 bn2b_branch2a[0][0]
__________________________________________________________________________________________________
res2b_branch2b (Conv2D) (None, 64, 48, 96) 36928 re_lu_3[0][0]
__________________________________________________________________________________________________
bn2b_branch2b (BatchNormalizati (None, 64, 48, 96) 256 res2b_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_1 (TensorFlowOp [(None, 64, 48, 96)] 0 re_lu_2[0][0]
bn2b_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_4 (ReLU) (None, 64, 48, 96) 0 tf_op_layer_add_1[0][0]
__________________________________________________________________________________________________
res3a_branch2a (Conv2D) (None, 128, 24, 48) 73856 re_lu_4[0][0]
__________________________________________________________________________________________________
bn3a_branch2a (BatchNormalizati (None, 128, 24, 48) 512 res3a_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_5 (ReLU) (None, 128, 24, 48) 0 bn3a_branch2a[0][0]
__________________________________________________________________________________________________
res3a_branch1 (Conv2D) (None, 128, 24, 48) 8320 re_lu_4[0][0]
__________________________________________________________________________________________________
res3a_branch2b (Conv2D) (None, 128, 24, 48) 147584 re_lu_5[0][0]
__________________________________________________________________________________________________
bn3a_branch1 (BatchNormalizatio (None, 128, 24, 48) 512 res3a_branch1[0][0]
__________________________________________________________________________________________________
bn3a_branch2b (BatchNormalizati (None, 128, 24, 48) 512 res3a_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_2 (TensorFlowOp [(None, 128, 24, 48) 0 bn3a_branch1[0][0]
bn3a_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_6 (ReLU) (None, 128, 24, 48) 0 tf_op_layer_add_2[0][0]
__________________________________________________________________________________________________
res3b_branch2a (Conv2D) (None, 128, 24, 48) 147584 re_lu_6[0][0]
__________________________________________________________________________________________________
bn3b_branch2a (BatchNormalizati (None, 128, 24, 48) 512 res3b_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_7 (ReLU) (None, 128, 24, 48) 0 bn3b_branch2a[0][0]
__________________________________________________________________________________________________
res3b_branch2b (Conv2D) (None, 128, 24, 48) 147584 re_lu_7[0][0]
__________________________________________________________________________________________________
bn3b_branch2b (BatchNormalizati (None, 128, 24, 48) 512 res3b_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_3 (TensorFlowOp [(None, 128, 24, 48) 0 re_lu_6[0][0]
bn3b_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_8 (ReLU) (None, 128, 24, 48) 0 tf_op_layer_add_3[0][0]
__________________________________________________________________________________________________
res4a_branch2a (Conv2D) (None, 256, 12, 24) 295168 re_lu_8[0][0]
__________________________________________________________________________________________________
bn4a_branch2a (BatchNormalizati (None, 256, 12, 24) 1024 res4a_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_9 (ReLU) (None, 256, 12, 24) 0 bn4a_branch2a[0][0]
__________________________________________________________________________________________________
res4a_branch1 (Conv2D) (None, 256, 12, 24) 33024 re_lu_8[0][0]
__________________________________________________________________________________________________
res4a_branch2b (Conv2D) (None, 256, 12, 24) 590080 re_lu_9[0][0]
__________________________________________________________________________________________________
bn4a_branch1 (BatchNormalizatio (None, 256, 12, 24) 1024 res4a_branch1[0][0]
__________________________________________________________________________________________________
bn4a_branch2b (BatchNormalizati (None, 256, 12, 24) 1024 res4a_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_4 (TensorFlowOp [(None, 256, 12, 24) 0 bn4a_branch1[0][0]
bn4a_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_10 (ReLU) (None, 256, 12, 24) 0 tf_op_layer_add_4[0][0]
__________________________________________________________________________________________________
res4b_branch2a (Conv2D) (None, 256, 12, 24) 590080 re_lu_10[0][0]
__________________________________________________________________________________________________
bn4b_branch2a (BatchNormalizati (None, 256, 12, 24) 1024 res4b_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_11 (ReLU) (None, 256, 12, 24) 0 bn4b_branch2a[0][0]
__________________________________________________________________________________________________
res4b_branch2b (Conv2D) (None, 256, 12, 24) 590080 re_lu_11[0][0]
__________________________________________________________________________________________________
bn4b_branch2b (BatchNormalizati (None, 256, 12, 24) 1024 res4b_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_5 (TensorFlowOp [(None, 256, 12, 24) 0 re_lu_10[0][0]
bn4b_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_12 (ReLU) (None, 256, 12, 24) 0 tf_op_layer_add_5[0][0]
__________________________________________________________________________________________________
res5a_branch2a (Conv2D) (None, 300, 12, 24) 691500 re_lu_12[0][0]
__________________________________________________________________________________________________
bn5a_branch2a (BatchNormalizati (None, 300, 12, 24) 1200 res5a_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_13 (ReLU) (None, 300, 12, 24) 0 bn5a_branch2a[0][0]
__________________________________________________________________________________________________
res5a_branch1 (Conv2D) (None, 300, 12, 24) 77100 re_lu_12[0][0]
__________________________________________________________________________________________________
res5a_branch2b (Conv2D) (None, 300, 12, 24) 810300 re_lu_13[0][0]
__________________________________________________________________________________________________
bn5a_branch1 (BatchNormalizatio (None, 300, 12, 24) 1200 res5a_branch1[0][0]
__________________________________________________________________________________________________
bn5a_branch2b (BatchNormalizati (None, 300, 12, 24) 1200 res5a_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_6 (TensorFlowOp [(None, 300, 12, 24) 0 bn5a_branch1[0][0]
bn5a_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_14 (ReLU) (None, 300, 12, 24) 0 tf_op_layer_add_6[0][0]
__________________________________________________________________________________________________
res5b_branch2a (Conv2D) (None, 300, 12, 24) 810300 re_lu_14[0][0]
__________________________________________________________________________________________________
bn5b_branch2a (BatchNormalizati (None, 300, 12, 24) 1200 res5b_branch2a[0][0]
__________________________________________________________________________________________________
re_lu_15 (ReLU) (None, 300, 12, 24) 0 bn5b_branch2a[0][0]
__________________________________________________________________________________________________
res5b_branch2b (Conv2D) (None, 300, 12, 24) 810300 re_lu_15[0][0]
__________________________________________________________________________________________________
bn5b_branch2b (BatchNormalizati (None, 300, 12, 24) 1200 res5b_branch2b[0][0]
__________________________________________________________________________________________________
tf_op_layer_add_7 (TensorFlowOp [(None, 300, 12, 24) 0 re_lu_14[0][0]
bn5b_branch2b[0][0]
__________________________________________________________________________________________________
re_lu_16 (ReLU) (None, 300, 12, 24) 0 tf_op_layer_add_7[0][0]
__________________________________________________________________________________________________
permute_feature (Permute) (None, 24, 12, 300) 0 re_lu_16[0][0]
__________________________________________________________________________________________________
flatten_feature (Reshape) (None, 24, 3600) 0 permute_feature[0][0]
__________________________________________________________________________________________________
lstm (LSTM) (None, 24, 512) 8423424 flatten_feature[0][0]
__________________________________________________________________________________________________
td_dense (TimeDistributed) (None, 24, 36) 18468 lstm[0][0]
__________________________________________________________________________________________________
softmax (Softmax) (None, 24, 36) 0 td_dense[0][0]
==================================================================================================
Total params: 14,432,480
Trainable params: 14,424,872
Non-trainable params: 7,608
__________________________________________________________________________________________________
2021-07-09 05:36:50,237 [INFO] __main__: Number of images in the training dataset: 111
2021-07-09 05:36:50,237 [INFO] __main__: Number of images in the validation dataset: 110
Epoch 1/24
1/4 [======>.......................] - ETA: 21s - loss: 1.2432WARNING:tensorflow:Method (on_train_batch_end) is slow compared to the batch update (0.829507). Check your callbacks.
2021-07-09 05:36:58,377 [WARNING] tensorflow: Method (on_train_batch_end) is slow compared to the batch update (0.829507). Check your callbacks.
3/4 [=====================>........] - ETA: 2s - loss: 0.8570tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Bootstrap : Using [0]lo:127.0.0.1<0> [1]eth0:10.244.58.228<0>
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO NET/IB : No device found.
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO NET/Socket : Using [0]lo:127.0.0.1<0> [1]eth0:10.244.58.228<0>
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Using network Socket
NCCL version 2.7.8+cuda11.1
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 00/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 01/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 02/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 03/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 04/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 05/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 06/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 07/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 08/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 09/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 10/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 11/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 12/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 13/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 14/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 15/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 16/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 17/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 18/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 19/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 20/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 21/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 22/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 23/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 24/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 25/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 26/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 27/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 28/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 29/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 30/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Channel 31/32 : 0
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Trees [0] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [1] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [2] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [3] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [4] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [5] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [6] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [7] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [8] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [9] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [10] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [11] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [12] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [13] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [14] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [15] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [16] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [17] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [18] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [19] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [20] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [21] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [22] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [23] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [24] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [25] -1/-1/-1->0->-1|-1->0->-1/-1/-1 [26] -1/-1/-1
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO Setting affinity for GPU 0 to ffffff00,0000ffff,ff000000
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO 32 coll channels, 32 p2p channels, 32 p2p channels per peer
tlt-furuse-7bc99fc9f4-mzqtk:5760:5892 [0] NCCL INFO comm 0x7fdd36f61a50 rank 0 nranks 1 cudaDev 0 busId e1000 - Init COMPLETE
Epoch 00001: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-01.tlt
4/4 [==============================] - 18s 5s/step - loss: 0.7808
Epoch 2/24
3/4 [=====================>........] - ETA: 0s - loss: 0.9575
Epoch 00002: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-02.tlt
4/4 [==============================] - 2s 459ms/step - loss: 0.7885
Epoch 3/24
3/4 [=====================>........] - ETA: 0s - loss: 0.9168
Epoch 00003: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-03.tlt
4/4 [==============================] - 1s 333ms/step - loss: 1.0077
Epoch 4/24
3/4 [=====================>........] - ETA: 0s - loss: 0.9096
Epoch 00004: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-04.tlt
4/4 [==============================] - 1s 341ms/step - loss: 0.8356
Epoch 5/24
3/4 [=====================>........] - ETA: 0s - loss: 0.4920
Epoch 00005: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-05.tlt
*******************************************
Accuracy: 98 / 110 0.8909090909090909
*******************************************
4/4 [==============================] - 6s 2s/step - loss: 0.6113
Epoch 6/24
3/4 [=====================>........] - ETA: 0s - loss: 0.7390
Epoch 00006: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-06.tlt
4/4 [==============================] - 1s 357ms/step - loss: 0.7515
Epoch 7/24
3/4 [=====================>........] - ETA: 0s - loss: 0.3931
Epoch 00007: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-07.tlt
4/4 [==============================] - 1s 345ms/step - loss: 0.3741
Epoch 8/24
3/4 [=====================>........] - ETA: 0s - loss: 0.4324
Epoch 00008: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-08.tlt
4/4 [==============================] - 1s 344ms/step - loss: 0.4426
Epoch 9/24
3/4 [=====================>........] - ETA: 0s - loss: 0.3006
Epoch 00009: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-09.tlt
4/4 [==============================] - 1s 355ms/step - loss: 0.2792
Epoch 10/24
3/4 [=====================>........] - ETA: 0s - loss: 0.5126
Epoch 00010: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-10.tlt
*******************************************
Accuracy: 100 / 110 0.9090909090909091
*******************************************
4/4 [==============================] - 4s 1s/step - loss: 0.4461
Epoch 11/24
3/4 [=====================>........] - ETA: 0s - loss: 0.4042
Epoch 00011: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-11.tlt
4/4 [==============================] - 1s 327ms/step - loss: 0.3477
Epoch 12/24
3/4 [=====================>........] - ETA: 0s - loss: 0.3892
Epoch 00012: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-12.tlt
4/4 [==============================] - 1s 329ms/step - loss: 0.3544
Epoch 13/24
3/4 [=====================>........] - ETA: 0s - loss: 0.4416
Epoch 00013: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-13.tlt
4/4 [==============================] - 1s 334ms/step - loss: 0.3674
Epoch 14/24
3/4 [=====================>........] - ETA: 0s - loss: 0.2404
Epoch 00014: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-14.tlt
4/4 [==============================] - 1s 334ms/step - loss: 0.2857
Epoch 15/24
3/4 [=====================>........] - ETA: 0s - loss: 0.6028
Epoch 00015: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-15.tlt
*******************************************
Accuracy: 100 / 110 0.9090909090909091
*******************************************
4/4 [==============================] - 4s 1s/step - loss: 0.4996
Epoch 16/24
3/4 [=====================>........] - ETA: 0s - loss: 0.3446
Epoch 00016: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-16.tlt
4/4 [==============================] - 1s 348ms/step - loss: 0.3084
Epoch 17/24
3/4 [=====================>........] - ETA: 0s - loss: 0.1858
Epoch 00017: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-17.tlt
4/4 [==============================] - 1s 339ms/step - loss: 0.2053
Epoch 18/24
3/4 [=====================>........] - ETA: 0s - loss: 0.8404
Epoch 00018: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-18.tlt
4/4 [==============================] - 1s 335ms/step - loss: 0.7287
Epoch 19/24
3/4 [=====================>........] - ETA: 0s - loss: 0.2634
Epoch 00019: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-19.tlt
4/4 [==============================] - 1s 332ms/step - loss: 0.2422
Epoch 20/24
3/4 [=====================>........] - ETA: 0s - loss: 0.5270
Epoch 00020: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-20.tlt
*******************************************
Accuracy: 100 / 110 0.9090909090909091
*******************************************
4/4 [==============================] - 4s 1s/step - loss: 0.4482
Epoch 21/24
3/4 [=====================>........] - ETA: 0s - loss: 0.4593
Epoch 00021: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-21.tlt
4/4 [==============================] - 1s 340ms/step - loss: 0.3884
Epoch 22/24
3/4 [=====================>........] - ETA: 0s - loss: 0.2618
Epoch 00022: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-22.tlt
4/4 [==============================] - 1s 334ms/step - loss: 0.2449
Epoch 23/24
3/4 [=====================>........] - ETA: 0s - loss: 0.2673
Epoch 00023: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-23.tlt
4/4 [==============================] - 1s 334ms/step - loss: 0.2799
Epoch 24/24
3/4 [=====================>........] - ETA: 0s - loss: 0.2546
Epoch 00024: saving model to /data/tlt-experiments/lprnet/experiment_dir_unpruned/weights/lprnet_epoch-24.tlt
4/4 [==============================] - 1s 333ms/step - loss: 0.2980
*******************************************
Accuracy: 101 / 110 0.9181818181818182
*******************************************
Thanks.