I tried to increase the number of element n = 8129 to n = 2 * 3200 * 2 * 8192 * 8 and
then ran the code but unfortunately it failed to pass correctResult. If I increase n
to 2 * 3200 * 2 * 8192 * 4 then it passed the check. the GPU was GTX TITAN X with 12G
memory.
/*
- Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
- Please refer to the NVIDIA end user license agreement (EULA) associated
- with this source code for terms and conditions that govern your use of
- this software. Any use, reproduction, disclosure, or distribution of
- this software and related documentation outside the terms of the EULA
- is strictly prohibited.
*/
/*
- Multi-GPU sample using OpenMP for threading on the CPU side
- needs a compiler that supports OpenMP 2.0
*/
#include <omp.h>
#include <stdio.h> // stdio functions are used since C++ streams aren’t necessarily thread safe
#include <helper_cuda.h>
using namespace std;
// a simple kernel that simply increments each array element by b
global void kernelAddConstant(unsigned int *g_a, const unsigned int b)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
g_a[idx] += b;
}
// a predicate that checks whether each array element is set to its index plus b
int correctResult(unsigned int *data, const unsigned int n, const unsigned int b)
{
int success = 1;
for (unsigned int i = 0; i < n; i++)
{
if (data[i] != i + b)
{
printf(“%u %u %u\n”, i, data[i], i + b);
success = 0;
return success;
}
}
return success;
}
int main(int argc, char *argv)
{
int num_gpus = 0; // number of CUDA GPUs
printf("%s Starting...\n\n", argv[0]);
/////////////////////////////////////////////////////////////////
// determine the number of CUDA capable GPUs
//
cudaGetDeviceCount(&num_gpus);
if (num_gpus < 1)
{
printf("no CUDA capable devices were detected\n");
return 1;
}
/////////////////////////////////////////////////////////////////
// display CPU and GPU configuration
//
printf("number of host CPUs:\t%d\n", omp_get_num_procs());
printf("number of CUDA devices:\t%d\n", num_gpus);
for (int i = 0; i < num_gpus; i++)
{
cudaDeviceProp dprop;
cudaGetDeviceProperties(&dprop, i);
printf(" %d: %s\n", i, dprop.name);
}
printf("---------------------------\n");
printf("sizeof(unsigned int) = %u\n", sizeof(unsigned int));
/////////////////////////////////////////////////////////////////
// initialize data
//
unsigned int n = 2 * 3200 * num_gpus * 8192 * 8;
unsigned int nbytes = n * sizeof(unsigned int);
unsigned int *a = 0; // pointer to data on the CPU
unsigned int b = 3; // value by which the array is incremented
a = (unsigned int *)malloc(nbytes);
if (0 == a)
{
printf("couldn't allocate CPU memory\n");
return 1;
}
for (unsigned int i = 0; i < n; i++)
a[i] = i;
////////////////////////////////////////////////////////////////
// run as many CPU threads as there are CUDA devices
// each CPU thread controls a different device, processing its
// portion of the data. It's possible to use more CPU threads
// than there are CUDA devices, in which case several CPU
// threads will be allocating resources and launching kernels
// on the same device. For example, try omp_set_num_threads(2*num_gpus);
// Recall that all variables declared inside an "omp parallel" scope are
// local to each CPU thread
//
//omp_set_num_threads(num_gpus); // create as many CPU threads as there are CUDA devices
omp_set_num_threads(8*num_gpus);// create twice as many CPU threads as there are CUDA devices
#pragma omp parallel shared(n, nbytes, a, b)
{
unsigned int cpu_thread_id = omp_get_thread_num();
unsigned int num_cpu_threads = omp_get_num_threads();
// // set and check the CUDA device for this CPU thread
// int gpu_id = -1;
// checkCudaErrors(cudaSetDevice(cpu_thread_id % num_gpus)); // “% num_gpus” allows more CPU threads than GPU devices
// checkCudaErrors(cudaGetDevice(&gpu_id));
// printf(“CPU thread %d (of %d) uses CUDA device %d\n”, cpu_thread_id, num_cpu_threads, gpu_id);
// set and check the CUDA device for this CPU thread
int gpu_id = 0;
checkCudaErrors(cudaSetDevice(gpu_id)); // "% num_gpus" allows more CPU threads than GPU devices
checkCudaErrors(cudaGetDevice(&gpu_id));
printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id,
num_cpu_threads, gpu_id);
unsigned int *d_a = 0; // pointer to memory on the device associated with this CPU thread
unsigned int *sub_a = a + cpu_thread_id * n / num_cpu_threads; // pointer to this CPU thread's portion of data
unsigned int nbytes_per_kernel = nbytes / num_cpu_threads;
dim3 gpu_threads(128); // 128 threads per block
dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads));
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes_per_kernel));
checkCudaErrors(cudaMemset(d_a, 0, nbytes_per_kernel));
checkCudaErrors(cudaMemcpy(d_a, sub_a, nbytes_per_kernel, cudaMemcpyHostToDevice));
kernelAddConstant<<<gpu_blocks, gpu_threads>>>(d_a, b);
checkCudaErrors(cudaMemcpy(sub_a, d_a, nbytes_per_kernel, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaFree(d_a));
}
printf("---------------------------\n");
if (cudaSuccess != cudaGetLastError())
printf("%s\n", cudaGetErrorString(cudaGetLastError()));
////////////////////////////////////////////////////////////////
// check the result
//
bool bResult = correctResult(a, n, b);
if (a)
free(a); // free CPU memory
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
cudaDeviceReset();
if (bResult) {
printf("bResult = true\n");
} else {
printf("bResult = false\n");
}
exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}