Custom SSD_v2 model is not convert to TRT_engine

Hi,

Sorry that it takes us some time to fix this issue.

We confirmed that your .pb model can be converted into TensorRT with this config.py.

#
# Copyright 1993-2019 NVIDIA Corporation.  All rights reserved.
#
# NOTICE TO LICENSEE:
#
# This source code and/or documentation ("Licensed Deliverables") are
# subject to NVIDIA intellectual property rights under U.S. and
# international Copyright laws.
#
# These Licensed Deliverables contained herein is PROPRIETARY and
# CONFIDENTIAL to NVIDIA and is being provided under the terms and
# conditions of a form of NVIDIA software license agreement by and
# between NVIDIA and Licensee ("License Agreement") or electronically
# accepted by Licensee.  Notwithstanding any terms or conditions to
# the contrary in the License Agreement, reproduction or disclosure
# of the Licensed Deliverables to any third party without the express
# written consent of NVIDIA is prohibited.
#
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
# SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE.  IT IS
# PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
# NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
# DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
# NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
# SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THESE LICENSED DELIVERABLES.
#
# U.S. Government End Users.  These Licensed Deliverables are a
# "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
# 1995), consisting of "commercial computer software" and "commercial
# computer software documentation" as such terms are used in 48
# C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
# only as a commercial end item.  Consistent with 48 C.F.R.12.212 and
# 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
# U.S. Government End Users acquire the Licensed Deliverables with
# only those rights set forth herein.
#
# Any use of the Licensed Deliverables in individual and commercial
# software must include, in the user documentation and internal
# comments to the code, the above Disclaimer and U.S. Government End
# Users Notice.
#

import graphsurgeon as gs
import tensorflow as tf
import numpy as np

Input = gs.create_node("Input",
    op="Placeholder",
    dtype=tf.float32,
    shape=[1, 3, 300, 300])
PriorBox = gs.create_plugin_node(name="GridAnchor", op="GridAnchor_TRT",
    numLayers=6,
    minSize=0.2,
    maxSize=0.95,
    aspectRatios=[1.0, 2.0, 0.5, 3.0, 0.33],
    variance=[0.1,0.1,0.2,0.2],
    featureMapShapes=[19, 10, 5, 3, 2, 1])
NMS = gs.create_plugin_node(name="NMS", op="NMS_TRT",
    shareLocation=1,
    varianceEncodedInTarget=0,
    backgroundLabelId=0,
    confidenceThreshold=1e-8,
    nmsThreshold=0.6,
    topK=100,
    keepTopK=100,
    numClasses=3,
    inputOrder= [0, 2, 1],
    confSigmoid=1,
    isNormalized=1)
concat_priorbox = gs.create_node(name="concat_priorbox", op="ConcatV2", dtype=tf.float32, axis=2)
concat_box_loc = gs.create_plugin_node("concat_box_loc", op="FlattenConcat_TRT", dtype=tf.float32, axis=1, ignoreBatch=0)
concat_box_conf = gs.create_plugin_node("concat_box_conf", op="FlattenConcat_TRT", dtype=tf.float32, axis=1, ignoreBatch=0)
dummy_const = gs.create_node(name="dummy_const", op="Const", dtype=tf.float32, value=np.array([1, 1], dtype=np.float32))

namespace_plugin_map = {
    "Concatenate": concat_priorbox,
    "MultipleGridAnchorGenerator": PriorBox,
    "Postprocessor": NMS,
    "image_tensor": Input,
    "Cast": Input,
    "ToFloat": Input,
    "Preprocessor": Input,
    "concat": concat_box_loc,
    "concat_1": concat_box_conf
}

namespace_remove = {
    "ToFloat",
    "image_tensor",
    "Preprocessor/map/TensorArrayStack_1/TensorArrayGatherV3",
}

def preprocess(dynamic_graph):
    dynamic_graph.remove(dynamic_graph.find_nodes_by_path(namespace_remove), remove_exclusive_dependencies=False)
    # Now create a new graph by collapsing namespaces
    dynamic_graph.collapse_namespaces(namespace_plugin_map)
    # Remove the outputs, so we just have a single output node (NMS).
    dynamic_graph.remove(dynamic_graph.graph_outputs, remove_exclusive_dependencies=False)
    dynamic_graph.append(dummy_const)
    dynamic_graph.find_nodes_by_op("GridAnchor_TRT")[0].input.append("dummy_const")
$ sudo python3 /usr/lib/python3.6/dist-packages/uff/bin/convert_to_uff.py frozen_inference_graph.pb -o sample_ssd_relu6.uff -O NMS -p config.py
$ /usr/src/tensorrt/bin/trtexec --uff=sample_ssd_relu6.uff --uffInput=Input,3,300,300 --output=NMS

Please let us know your results.
Thanks.