My system configuration:ubuntu 18.04 + cuda10 + deepstream_sdk_4.0 + RTX2080Ti
I am using objectDetector_Yolo demo to deployment yolov3 model(80 categories were detected).After configuration according to redamen.Use "deepstream-app -c deepstream_app_config_yoloV3.txt " to run it.
But this results in very low FPS.
It’s results:
**PERF: 16.12 (16.12) 14.90 (14.90) 14.95 (14.95) 14.76 (14.76) 14.71 (14.71) 14.77 (14.77) 14.85 (14.85)
**PERF: 15.07 (15.57) 15.07 (14.99) 15.06 (15.01) 15.08 (14.94) 15.06 (14.90) 15.08 (14.94) 15.07 (14.97)
**PERF: 15.00 (15.37) 15.00 (14.99) 15.00 (15.01) 15.00 (14.96) 15.00 (14.93) 15.00 (14.96) 15.00 (14.98)
**PERF: 15.11 (15.30) 15.08 (15.02) 15.11 (15.03) 15.08 (14.99) 15.11 (14.98) 15.10 (15.00) 15.08 (15.01)
**PERF: 15.07 (15.26) 15.10 (15.03) 15.08 (15.04) 15.10 (15.01) 15.07 (15.00) 15.09 (15.01) 15.10 (15.03)
**PERF: 14.87 (15.19) 14.84 (15.00) 14.87 (15.01) 14.85 (14.99) 14.85 (14.97) 14.85 (14.99) 14.84 (14.99)
You can see from this that the FPS for each source is only 15.
Here is the configuration file i’am used(deepstream_app_config_yoloV3.txt and config_infer_primary_yoloV3.txt):
deepstream_app_config_yoloV3.txt:
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=10
#gie-kitti-output-dir=streamscl
[tiled-display]
enable=1
rows=1
columns=2
width=1280
height=720
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0
[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=3
uri=rtsp://camera_url/h264/ch1/main/av_stream
num-sources=1
num-extra-surfaces=10
gpu-id=0
#drop-frame-interval=5
(0): memtype_device - Memory type Device
(1): memtype_pinned - Memory type Host Pinned
(2): memtype_unified - Memory type Unified
cudadec-memtype=0
[source1]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=3
uri=rtsp://camera_url/h264/ch1/main/av_stream
num-sources=6
num-extra-surfaces=10
gpu-id=0
#drop-frame-interval=5
(0): memtype_device - Memory type Device
(1): memtype_pinned - Memory type Host Pinned
(2): memtype_unified - Memory type Unified
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=0
qos=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=1
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
live-source=1
#batch-size=7
batch-size=2
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
Set muxer output width and height
width=1920
height=1080
##Enable to maintain aspect ratio wrt source, and allow black borders, works
##along with width, height properties
enable-padding=0
nvbuf-memory-type=0
config-file property is mandatory for any gie section.
Other properties are optional and if set will override the properties set in
the infer config file.
[primary-gie]
enable=1
gpu-id=0
#model-engine-file=model_b1_int8.engine
labelfile-path=labels.txt
#batch-size=7
batch-size=2
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
#interval=2
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV3.txt
[tests]
#file-loop=0
file-loop=1
config_infer_primary_yoloV3.txt:
[property]
gpu-id=0
net-scale-factor=1
#0=RGB, 1=BGR
model-color-format=0
custom-network-config=yolov3.cfg
model-file=yolov3.weights
model-engine-file=model_b1_int8.engine
labelfile-path=labels.txt
int8-calib-file=yolov3-calibration.table.trt5.1
0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
num-detected-classes=80
gie-unique-id=1
is-classifier=0
maintain-aspect-ratio=1
parse-bbox-func-name=NvDsInferParseCustomYoloV3
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
I also referred to the Troubleshooting documentation, but it was hardly helpful.
Can you give me some useful advice?Thank you very much.