tx2+deepstream4.0+yolov3

Hi!

What should i do to run my custom yolov3 module without yolo_83 and yolo_95?
With these 2 part my custom yolov3 module can’t even block anything.

deepstream-app -c deepstream_app_config_yoloV3.txt

Using winsys: x11

Creating LL OSD context new
0:00:01.226364432 11314     0x3bc91160 WARN                 nvinfer gstnvinfer.cpp:515:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:useEngineFile(): Failed to read from model engine file
0:00:01.226503065 11314     0x3bc91160 INFO                 nvinfer gstnvinfer.cpp:519:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:initialize(): Trying to create engine from model files
Loading pre-trained weights...
Loading complete!
Total Number of weights read : 61619422
      layer               inp_size            out_size       weightPtr
(1)   conv-bn-leaky     3 x 416 x 416      32 x 416 x 416    992   
(2)   conv-bn-leaky    32 x 416 x 416      64 x 208 x 208    19680 
(3)   conv-bn-leaky    64 x 208 x 208      32 x 208 x 208    21856 
(4)   conv-bn-leaky    32 x 208 x 208      64 x 208 x 208    40544 
(5)   skip             64 x 208 x 208      64 x 208 x 208        - 
(6)   conv-bn-leaky    64 x 208 x 208     128 x 104 x 104    114784
(7)   conv-bn-leaky   128 x 104 x 104      64 x 104 x 104    123232
(8)   conv-bn-leaky    64 x 104 x 104     128 x 104 x 104    197472
(9)   skip            128 x 104 x 104     128 x 104 x 104        - 
(10)  conv-bn-leaky   128 x 104 x 104      64 x 104 x 104    205920
(11)  conv-bn-leaky    64 x 104 x 104     128 x 104 x 104    280160
(12)  skip            128 x 104 x 104     128 x 104 x 104        - 
(13)  conv-bn-leaky   128 x 104 x 104     256 x  52 x  52    576096
(14)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    609376
(15)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    905312
(16)  skip            256 x  52 x  52     256 x  52 x  52        - 
(17)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    938592
(18)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    1234528
(19)  skip            256 x  52 x  52     256 x  52 x  52        - 
(20)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    1267808
(21)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    1563744
(22)  skip            256 x  52 x  52     256 x  52 x  52        - 
(23)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    1597024
(24)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    1892960
(25)  skip            256 x  52 x  52     256 x  52 x  52        - 
(26)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    1926240
(27)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    2222176
(28)  skip            256 x  52 x  52     256 x  52 x  52        - 
(29)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    2255456
(30)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    2551392
(31)  skip            256 x  52 x  52     256 x  52 x  52        - 
(32)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    2584672
(33)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    2880608
(34)  skip            256 x  52 x  52     256 x  52 x  52        - 
(35)  conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    2913888
(36)  conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    3209824
(37)  skip            256 x  52 x  52     256 x  52 x  52        - 
(38)  conv-bn-leaky   256 x  52 x  52     512 x  26 x  26    4391520
(39)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    4523616
(40)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    5705312
(41)  skip            512 x  26 x  26     512 x  26 x  26        - 
(42)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    5837408
(43)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    7019104
(44)  skip            512 x  26 x  26     512 x  26 x  26        - 
(45)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    7151200
(46)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    8332896
(47)  skip            512 x  26 x  26     512 x  26 x  26        - 
(48)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    8464992
(49)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    9646688
(50)  skip            512 x  26 x  26     512 x  26 x  26        - 
(51)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    9778784
(52)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    10960480
(53)  skip            512 x  26 x  26     512 x  26 x  26        - 
(54)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    11092576
(55)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    12274272
(56)  skip            512 x  26 x  26     512 x  26 x  26        - 
(57)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    12406368
(58)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    13588064
(59)  skip            512 x  26 x  26     512 x  26 x  26        - 
(60)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    13720160
(61)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    14901856
(62)  skip            512 x  26 x  26     512 x  26 x  26        - 
(63)  conv-bn-leaky   512 x  26 x  26    1024 x  13 x  13    19624544
(64)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    20150880
(65)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    24873568
(66)  skip           1024 x  13 x  13    1024 x  13 x  13        - 
(67)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    25399904
(68)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    30122592
(69)  skip           1024 x  13 x  13    1024 x  13 x  13        - 
(70)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    30648928
(71)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    35371616
(72)  skip           1024 x  13 x  13    1024 x  13 x  13        - 
(73)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    35897952
(74)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    40620640
(75)  skip           1024 x  13 x  13    1024 x  13 x  13        - 
(76)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    41146976
(77)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    45869664
(78)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    46396000
(79)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    51118688
(80)  conv-bn-leaky  1024 x  13 x  13     512 x  13 x  13    51645024
(81)  conv-bn-leaky   512 x  13 x  13    1024 x  13 x  13    56367712
(82)  conv-linear    1024 x  13 x  13      42 x  13 x  13    56410762
(83)  yolo             42 x  13 x  13      42 x  13 x  13    56410762
(84)  route                  -            512 x  13 x  13    56410762
(85)  conv-bn-leaky   512 x  13 x  13     256 x  13 x  13    56542858
(86)  upsample        256 x  13 x  13     256 x  26 x  26        - 
(87)  route                  -            768 x  26 x  26    56542858
(88)  conv-bn-leaky   768 x  26 x  26     256 x  26 x  26    56740490
(89)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    57922186
(90)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    58054282
(91)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    59235978
(92)  conv-bn-leaky   512 x  26 x  26     256 x  26 x  26    59368074
(93)  conv-bn-leaky   256 x  26 x  26     512 x  26 x  26    60549770
(94)  conv-linear     512 x  26 x  26      42 x  26 x  26    60571316
(95)  yolo             42 x  26 x  26      42 x  26 x  26    60571316
(96)  route                  -            256 x  26 x  26    60571316
(97)  conv-bn-leaky   256 x  26 x  26     128 x  26 x  26    60604596
(98)  upsample        128 x  26 x  26     128 x  52 x  52        - 
(99)  route                  -            384 x  52 x  52    60604596
(100) conv-bn-leaky   384 x  52 x  52     128 x  52 x  52    60654260
(101) conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    60950196
(102) conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    60983476
(103) conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    61279412
(104) conv-bn-leaky   256 x  52 x  52     128 x  52 x  52    61312692
(105) conv-bn-leaky   128 x  52 x  52     256 x  52 x  52    61608628
(106) conv-linear     256 x  52 x  52      42 x  52 x  52    61619422
(107) yolo             42 x  52 x  52      42 x  52 x  52    61619422
Output blob names :
yolo_83
yolo_95
yolo_107
Total number of layers: 257
Total number of layers on DLA: 0
Building the TensorRT Engine...
Building complete!
0:06:16.772790495 11314     0x3bc91160 INFO                 nvinfer gstnvinfer.cpp:519:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:generateTRTModel(): Storing the serialized cuda engine to file at /opt/nvidia/deepstream/deepstream-4.0/sources/objectDetector_Yolo/model_b1_fp16.engine
Deserialize yoloLayerV3 plugin: yolo_83
Deserialize yoloLayerV3 plugin: yolo_95
Deserialize yoloLayerV3 plugin: yolo_107

Runtime commands:
	h: Print this help
	q: Quit

	p: Pause
	r: Resume

NOTE: To expand a source in the 2D tiled display and view object details, left-click on the source.
      To go back to the tiled display, right-click anywhere on the window.

**PERF: FPS 0 (Avg)	
**PERF: 0.00 (0.00)	
** INFO: <bus_callback:163>: Pipeline ready

Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
** INFO: <bus_callback:149>: Pipeline running

Hi,

yolo_83 and yolo_95 indicate output layer name of the YOLO model.
It is automatically named for the “yolo” type layer with the i-th layer index.

Suppose the output layer type of customized model is “yolo” also.
Then it should be workable with deepstream natively.

Thanks.