Does yolov4 tiny support evaluation of pruned models?

Please provide the following information when requesting support.

• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc) Yolo_v4_tiny
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here) 5.0

I run yolo_v4_tiny.ipynb from getting_started_v5.0.0/notebooks/tao_launcher_starter_kit/yolo_v4_tiny.
I only see evaluations for trained model and re-trained pruned model methods.
I try to run “!tao model yolo_v4_tiny evaluation -e $SPECS_DIR/yolo_v4_tiny_train_kitti.txt
-m $LOCAL_EXPERIMENT_DIR/experiment_dir_pruned/yolov4_cspdarknet_tiny_pruned.hdf5”, but I get the following error.

2023-08-11 08:30:24,570 [TAO Toolkit] [INFO] root 160: Registry: [‘nvcr.io’]
2023-08-11 08:30:24,630 [TAO Toolkit] [INFO] nvidia_tao_cli.components.instance_handler.local_instance 360: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5
2023-08-11 08:30:24,648 [TAO Toolkit] [WARNING] nvidia_tao_cli.components.docker_handler.docker_handler 262:
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the “user”:“UID:GID” in the
DockerOptions portion of the “/home/ubuntu/.tao_mounts.json” file. You can obtain your
users UID and GID by using the “id -u” and “id -g” commands on the
terminal.
2023-08-11 08:30:24,648 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 275: Printing tty value True
Using TensorFlow backend.
2023-08-11 08:30:27.648730: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2023-08-11 08:30:27,699 [TAO Toolkit] [WARNING] tensorflow 40: Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
2023-08-11 08:30:29,001 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2023-08-11 08:30:29,041 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2023-08-11 08:30:29,046 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2023-08-11 08:30:30,611 [TAO Toolkit] [INFO] matplotlib.font_manager 1633: generated new fontManager
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2023-08-11 08:30:33,921 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2023-08-11 08:30:33,963 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2023-08-11 08:30:33,966 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead.

2023-08-11 08:30:34,205 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead.

2023-08-11 08:30:34,205 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:102: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2023-08-11 08:30:34,206 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:102: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

2023-08-11 08:30:34,207 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

Traceback (most recent call last):
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/yolo_v4/scripts/evaluate.py”, line 300, in
main()
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/common/utils.py”, line 717, in return_func
raise e
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/common/utils.py”, line 705, in return_func
return func(*args, **kwargs)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/yolo_v4/scripts/evaluate.py”, line 296, in main
raise e
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/yolo_v4/scripts/evaluate.py”, line 284, in main
evaluate(args)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/yolo_v4/scripts/evaluate.py”, line 164, in evaluate
model = load_model(
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/yolo_v4/utils/model_io.py”, line 70, in load_model
model = get_model_with_input(model_path, input_layer)
File “/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/yolo_v4/utils/model_io.py”, line 39, in get_model_with_input
return keras.models.load_model(
File “/usr/local/lib/python3.8/dist-packages/keras/engine/saving.py”, line 417, in load_model
f = h5dict(filepath, ‘r’)
File “/usr/local/lib/python3.8/dist-packages/keras/utils/io_utils.py”, line 186, in init
self.data = h5py.File(path, mode=mode)
File “/usr/local/lib/python3.8/dist-packages/h5py/_hl/files.py”, line 312, in init
fid = make_fid(name, mode, userblock_size, fapl, swmr=swmr)
File “/usr/local/lib/python3.8/dist-packages/h5py/_hl/files.py”, line 142, in make_fid
fid = h5f.open(name, flags, fapl=fapl)
File “h5py/_objects.pyx”, line 54, in h5py._objects.with_phil.wrapper
File “h5py/_objects.pyx”, line 55, in h5py._objects.with_phil.wrapper
File “h5py/h5f.pyx”, line 78, in h5py.h5f.open
OSError: Unable to open file (unable to open file: name = ‘/home/ubuntu/tao-experiments/yolo_v4_tiny/experiment_dir_pruned/yolov4_cspdarknet_tiny_pruned.hdf5’, errno = 2, error message = ‘No such file or directory’, flags = 0, o_flags = 0)
Execution status: FAIL
2023-08-11 08:30:36,901 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 337: Stopping container.

I’m pretty sure the file path is correct.
Does yolov4 tiny support evaluation of pruned models?

Could you please double check the hdf5 is available and the path is correct?

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.